DOI QR코드

DOI QR Code

Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

  • Woo, Su-Mi (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Lim, Hae-Soon (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Jeong, Kyung-Yi (Department of Dental Hygiene, Honam University) ;
  • Kim, Seon-Mi (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Won-Jae (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Jung, Ji-Yeon (Dental Science Research Institute, School of Dentistry, Chonnam National University)
  • 투고 : 2014.11.18
  • 심사 : 2015.04.28
  • 발행 : 2015.07.31

초록

The active metabolite of vitamin D such as $1{\alpha}$,25-dihydroxyvitamin ($D_3(1{\alpha},25(OH)_2D_3)$ is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin $D_3$ metabolite, $1{\alpha},25(OH)_2D_3$, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with $1{\alpha},25(OH)_2D_3$ in the absence of differentiation-inducing factors. Treatment of HDPCs with $1{\alpha},25(OH)_2D_3$ at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, $1{\alpha},25(OH)_2D_3$ enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, $1{\alpha},25(OH)_2D_3$ induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by $1{\alpha},25(OH)_2D_3$. These results demonstrated that $1{\alpha},25(OH)_2D_3$ promoted odontoblastic differentiation of HDPCs via modulating ERK activation.

키워드

참고문헌

  1. Barron, M.J., McDonnell, S.T., Mackie, I., and Dixon, M.J. (2008). Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet. J. Rare. Dis. 3, 31. https://doi.org/10.1186/1750-1172-3-31
  2. Feng, J.Q., Luan, X., Wallace, J., Jing, D., Ohshima, T., Kulkarni, A.B., D'Souza, R.N., Kozak, C.A., and MacDougall, M. (1998). Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphorprotein. J. Biol. Chem. 273, 9457-9464. https://doi.org/10.1074/jbc.273.16.9457
  3. Ge, C., Xiao, G., Jiang, D., and Franceschi, R.T. (2007). Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell. Biol. 176, 709-718. https://doi.org/10.1083/jcb.200610046
  4. Greenblatt, M.B., Shim, J.H., Zou, W., Sitara, D., Schweitzer, M., Hu, D., Lotinun, S., Sano, Y., Baron, R., Park, J.M., et al. (2010). The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest. 120, 2457-2473. https://doi.org/10.1172/JCI42285
  5. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G., and Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97, 13625-13630. https://doi.org/10.1073/pnas.240309797
  6. Gronthos, S., Brahim, J., Li, W., Fisher, L.W., Cherman, N., Boyde, A., DenBesten, P., Robey, P.G., and Shi, S. (2002). Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81, 531-535. https://doi.org/10.1177/154405910208100806
  7. He, W., Qu, T., Yu, Q., Wang, Z., Lv, H., Zhang, J., Zhao, X., and Wang, P. (2013). LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. Int. Endod. J. 46, 128-136. https://doi.org/10.1111/j.1365-2591.2012.02096.x
  8. Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
  9. Khanna-Jain, R., Vuorinen, A., Sandor, G.K., Suuronen, R., and Miettinen, S. (2010). Vitamin D3 metabolites induce osteogenic differentiation in human dental pulp and human dental follicle cells. J. Steroid. Biochem. Mol. Biol. 122, 133-141. https://doi.org/10.1016/j.jsbmb.2010.08.001
  10. Kido, J., Ishida, H., Nagata, T., Hamasaki, A., Nishikawa, S., and Wakano, Y. (1991). Effects of parathyroid hormone, 1,25-dihydroxyvitamin D3, and prostaglandin E2 on alkaline phosphatase activity in cultured dental pulp and gingiva cells of bovine calf. J. Endod. 17, 161-164. https://doi.org/10.1016/S0099-2399(06)82009-1
  11. Kim, Y.S., Stumpf, W.E., Clark, S.A., Sar, M., and DeLuca, H.F. (1983). Target cells for 1,25-dihydroxyvitamin D3 in developing rat incisor teeth. J. Dent. Res. 62, 58-59. https://doi.org/10.1177/00220345830620011301
  12. Kono, S.J., Oshima, Y., Hoshi, K., Bonewald, L.F., Oda, H., Nakamura, K., Kawaguchi, H., and Tanaka, S. (2007). Erk pathways negatively regulate matrix mineralization. Bone 40, 68-74. https://doi.org/10.1016/j.bone.2006.07.024
  13. Laino, G., d'Aquino, R., Graziano, A., Lanza, V., Carinci, F., Naro, F., Pirozzi, G., and Papaccio, G. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J. Bone Miner. Res. 20, 1394-1402. https://doi.org/10.1359/JBMR.050325
  14. Liu, C.H., Hung, C.J., Huang, T.H., Lin, C.C., Kao, C.T., and Shie, M.Y. (2014). Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. Mater. Sci. Eng. C. Mater. Biol. Appl. 43, 359-366. https://doi.org/10.1016/j.msec.2014.06.025
  15. Mason, S.S., Kohles, S.S., Winn, S.R., Zelick, R.D. (2014). The influence of vitamin D metabolism on gene expression, matrix production and mineralization during osteoprecursor cell-based bone development. J. Endocrinol. Metab. 4, 1-12.
  16. Nakayama, K., Tamura, Y., Suzawa, M., Harada, S., Fukumoto, S., Kato, M., Miyazono, K., Rodan, G.A., Takeuchi, Y., and Fujita, T. (2003). Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J. Bone. Miner. Res. 18, 827-835. https://doi.org/10.1359/jbmr.2003.18.5.827
  17. Nociti, F.H., Jr., Foster, B.L., Tran, A.B., Dunn, D., Presland, R.B., Wang, L., Bhattacharyya, N., Collins, M.T., and Somerman, M.J. (2014). Vitamin D represses dentin matrix protein 1 in cementblasts and osteocytes. J. Dent. Res. 93, 148-154. https://doi.org/10.1177/0022034513516344
  18. Pitaru, S., Blaushild, N., Noff, D., and Edelstein, S. (1982). The effect of toxic doses of 1,25-dihydroxycholecalciferol on dental tissues in the rat. Arch. Oral. Biol. 27, 915-923. https://doi.org/10.1016/0003-9969(82)90097-8
  19. Qin, W., Lin, Z.M., Deng, R., Li, D.D., Song, Z., Tian, Y.G., Wang, R.F., Ling, J.Q., and Zhu, X.F. (2012). p38a MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells. Int. Endod. J. 45, 224-233 https://doi.org/10.1111/j.1365-2591.2011.01965.x
  20. Qin, W., Liu, P., Zhang, R., Huang, S., Gao, X., Song, Z., Wang, R., Chen, L., Guo, B., and Lin, Z. (2014). JNK MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells. Connect. Tissue Res. 55, 217-224. https://doi.org/10.3109/03008207.2014.882331
  21. Ritchie, H.H., Berry, J.E., Somerman, M.J., Hanks, C.T., Bronckers, A.L., Hotton, D., Papagerakis, P., Berdal, A., and Butler, W.T. (1997). Dentin sialoprotein (DSP) transcripts: developmentallysustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur. J. Oral. Sci. 105, 405-413. https://doi.org/10.1111/j.1600-0722.1997.tb02137.x
  22. Ritchie, H.H., Park, H., Liu, J., Bervoets, T.J., and Bronckers, A.L. (2004). Effects of dexamethasone, vitamin A and vitamin D3 on DSP-PP mRNA expression in rat tooth organ culture. Biochim. Biophys. Acta 1679, 263-271. https://doi.org/10.1016/j.bbaexp.2004.07.004
  23. Tonomura, A., Sumita, Y., Ando, Y., Iejima, D., Kagami, H., Honda, M.J., and Ueda, M. (2007). Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect. Tissue Res. 48, 229-238. https://doi.org/10.1080/03008200701507909
  24. van Driel, M., Pols, H.A., and van Leeuwen, J.P. (2004). Osteoblast differentiation and control by vitamin D and vitamin D metabolites. Curr. Pham. Des. 10, 2535-2555. https://doi.org/10.2174/1381612043383818
  25. Wang, F.M., Hu, T., and Zhou, X. (2006). p38 mitogen-activated protein kinase and alkaline phosphatase in human dental pulp cells. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 102, 114-118. https://doi.org/10.1016/j.tripleo.2005.08.007
  26. Wu, Y., Zhang, X., Zhang, P., Fang, B., and Jiang, L. (2012). Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect. Tissue Res. 53, 451-459. https://doi.org/10.3109/03008207.2012.702815
  27. Yamamura, T. (1985). Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J. Dent. Res. 64, 530-540. https://doi.org/10.1177/002203458506400406
  28. Yang, S.H., Sharrocks, A.D., and Whitmarsh, A.J. (2013). MAP kinase signalling cascades and transcriptional regulation. Gene 513, 1-13. https://doi.org/10.1016/j.gene.2012.10.033
  29. Zhang, H., Liu, S., Zhou, Y., Tan, J., Che, H., Ning, F., Zhang, X., Xun, W., Huo, N., Tang, L., Deng, Z., and Jin, Y. (2012). Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway. Tissue Eng. Part. A. 18, 677-691.
  30. Zhao, X., He, W., Song, Z., Tong, Z., L,i S., and Ni, L. (2012). Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol. Biol. Rep. 39, 215-220. https://doi.org/10.1007/s11033-011-0728-z

피인용 문헌

  1. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells vol.50, pp.3, 2017, https://doi.org/10.1111/cpr.12335
  2. Calcium Hydroxide–induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells vol.42, pp.9, 2016, https://doi.org/10.1016/j.joen.2016.04.025
  3. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors vol.7, 2016, https://doi.org/10.3389/fphys.2016.00503
  4. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes vol.97, pp.9, 2017, https://doi.org/10.1038/labinvest.2017.62
  5. 1,25-Dihydroxyvitamin D3 stimulates odontoblastic differentiation of human dental pulp-stem cells in vitro 2017, https://doi.org/10.1080/03008207.2016.1264395
  6. Insulin-like growth factor-1 promotes the proliferation and odontoblastic differentiation of human dental pulp cells under high glucose conditions vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3117
  7. Dentinogenic effects of extracted dentin matrix components digested with matrix metalloproteinases vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29112-3
  8. MagT1 regulated the odontogenic differentiation of BMMSCs induced byTGC-CM via ERK signaling pathway vol.10, pp.1, 2019, https://doi.org/10.1186/s13287-019-1148-6
  9. 승마추출물이 MDPC-23세포의 분화에 미치는 영향 vol.17, pp.3, 2017, https://doi.org/10.13065/jksdh.2017.17.03.441
  10. Vitamin D Proliferates Vaginal Epithelium through RhoA Expression in Postmenopausal Atrophic Vagina tissue vol.40, pp.9, 2017, https://doi.org/10.14348/molcells.2017.0026
  11. Combination of mineral trioxide aggregate and propolis promotes odontoblastic differentiation of human dental pulp stem cells through ERK signaling pathway vol.28, pp.6, 2015, https://doi.org/10.1007/s10068-019-00609-5
  12. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling vol.10, pp.1, 2015, https://doi.org/10.1186/s13287-019-1493-5
  13. Synergistic potential of 1α,25-dihydroxyvitamin D3 and calcium-aluminate-chitosan scaffolds with dental pulp cells vol.24, pp.2, 2015, https://doi.org/10.1007/s00784-019-02906-z
  14. Vitamin D3 and Dental Mesenchymal Stromal Cells vol.10, pp.13, 2015, https://doi.org/10.3390/app10134527
  15. Efficacy of Photobiomodulation and Vitamin D on Odontogenic Activity of Human Dental Pulp Stem Cells vol.12, pp.1, 2015, https://doi.org/10.34172/jlms.2021.30
  16. Efficacy of Photobiomodulation and Vitamin D on Odontogenic Activity of Human Dental Pulp Stem Cells vol.12, pp.1, 2015, https://doi.org/10.34172/jlms.2021.30
  17. Evaluation of Vitamin D (25OHD), Bone Alkaline Phosphatase (BALP), Serum Calcium, Serum Phosphorus, Ionized Calcium in Patients with Mandibular Third Molar Impaction. An Observational Study vol.13, pp.6, 2015, https://doi.org/10.3390/nu13061938