DOI QR코드

DOI QR Code

ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions

  • 김종민 (단국대학교 토목환경공학과) ;
  • 김서준 (단국대학교 토목환경공학과) ;
  • 손근수 (단국대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과)
  • Kim, Jongmin (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Kim, Seojun (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Son, Geunsoo (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Kim, Dongsu (Dept. of Civil & Environmental Eng, Dankook University)
  • 투고 : 2015.04.28
  • 심사 : 2015.06.01
  • 발행 : 2015.07.31

초록

ADCP는 하천의 3차원 유속과 수심 자료를 매우 효율적이고 빠르게 측정할 수 있으며, 그 자료의 공간 및 시간적 해상도는 기존의 전통적인 유속 측정 방법들과 비교하여 매우 정밀하다는 장점이 있다. 하지만 ADCP는 하상 부근과 센서 근처에서의 미계측 영역이 발생하고 이 미계측 영역의 유속을 얼마나 정확하게 산정하느냐에 따라 ADCP 유량 측정의 정확도에 영향을 미친다. 본 연구에서는 ADCP 유량 산정 시 범용적으로 활용되고 있는 1/6 멱법칙(power law)을 활용한 미계측 영역의 유량 측정 결과의 정확도를 분석하였다. 이를 위해 실규모 직선수로에서 ADCP를 고정시킨 상태에서 측정한 유속 자료를 1/6 멱법칙과 대수 법칙(log law)을 적용하여 외삽 한 유속분포와 유량 산정 결과를 ADV를 이용하여 정밀하게 측정한 결과와 비교하였다. 비교 결과 전체적으로 대수 법칙으로 외삽한 경우가 높은 정확도를 나타냈으며, 수표면 근처 미계측 영역에서는 1/6 멱법칙은 유량을 작게 산정하는 경향을 나타냈고, 하상 근처의 미계측 영역에서는 유량을 크게 산정하는 경향을 나타냈다. 이 결과는 기존 1/6 멱법칙을 활용한 하상 및 수표면 부근 미계측 영역 유량 추정 방법이 오차를 수반함을 의미한다. 따라서 ADCP 정지법 측정 방식을 사용할 경우, 대수 법칙이 1/6 멱법칙보다 정확한 상하부 미계측 유량 추정 결과를 보여주었으므로 대안으로 고려되어야 할 것이다. 또한 제방 근처 미계측 영역의 유량 측정 정확도를 높이기 위해서는 수심이 0.6 m 이상을 확보한 측선을 기준으로 유량을 산정할 경우 신뢰도 높은 유량 측정 결과를 보였다. 향후, ADCP 정지법 측정 방식에 비해 보다 많이 활용되고 있는 보트탑재 이동식 ADCP의 경우도 이와 같은 검증이 필요하다고 하겠다.

Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

키워드

참고문헌

  1. Chen, C.L. (1991). "Unified theory on power laws for flow resistance." Journal of Hydraulic Engineering, Vol. 117, No. 3, pp. 371-389. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(371)
  2. Frizell, K.W., and Vermeyen, T.B. (2007). "Comparing apples and oranges: teledyne/RDI StreamPro ADCP and the OTT QLiner river discharge measurement system." Proceedings of Hydraulic Measurements and Experimental Methods (HMEM) Congress, Lake Placid, New York, USA.
  3. Fulford, J.M., and Sauer, V.B. (1986). "Comparison of velocity interpolation methods for computing openchannel discharge. In: Subitsky. S.Y. (Ed.)" Selected papers in the hydrologic sciences, US Geological Survey Water-Supply Paper. 2290, pp. 139-144.
  4. Garcia, C.M., Tarrab, L., Oberg, K., Szupianny, R., and Cantero, M.I. (2012). "Variance of discharge estimates sampled using ADCPs from moving platforms." Journal of Hydraulic Engineering, Vol. 138, No. 8, pp. 684-694. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000558
  5. Gunawan, B. (2010). "A study of flow structures in a two-stage channel using field data." A Physical Model and Numerical Modelling. PhD Thesis Dissertation, The University of Birmingham, UK.
  6. Huang, H. (2012). "Uncertainty model for in situ quality control of stationary ADCP open-channel discharge measurement." Journal of Hydraulic Engineering, Vol. 138, No. 1, pp. 4-12. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000492
  7. ISO 1088 (2007). "Hydrometry-Velocity-area Methods Using Current-Meters-Collection and Processing of Data for Determination of Uncertainties in Flow Measurement." International Organization for Standardization, ISO 1088, Geneva, Switzerland.
  8. Lee, C.J., Kim, D.G., Kwon, S.I., and Kim, W. (2010). "Inter-comparison of Accuracy of Discharge Measurement Methods-A Case Study Performed in the Dalcheon River Downstream of the Goesan Dam-." Journal of Korea Water Resources Association, Vol. 43, No. 12, pp. 1039-1050. (in Korean) https://doi.org/10.3741/JKWRA.2010.43.12.1039
  9. Lee, K.T., Ho, H.C., Muste, M., and Wu, C.H. (2014). "Uncertainty in open channel discharge measurements acquired with streampro ADCP." Journal of Hydrology, Vol. 509, pp. 101-114. https://doi.org/10.1016/j.jhydrol.2013.11.031
  10. Mueller, D.S., and Wagner, C. (2009). "Measuring discharge with ADCPs from a moving boat." US Geological Survey Tech Method 3A-22. USGS, Reston VA.
  11. Muste, M, Yu, K., and Spaspjevic, M. (2004). "Practical aspects ADCP data use for quantification of mean river flow characteristics; part I : moving-vessel measurement." Flowmeasurement and instrumentation, Vol. 15, No. 1, pp. 1-6.
  12. Muste, M., Kim, D.S., and Gonzalez-Castro, J.A. (2010). "Near-Transducer Errors in ADCP Measurements: Experimental Findings." Journal of Hydraulic Engineering, Vol. 136, No. 5, pp. 275-289. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000173
  13. Muste, M., Vermeyen, T., Hotchkiss, R., and Oberg, K. (2007). "Acoustic velocimetry for riverine environments." Journal of Hydraulic Engineering, Vol. 115, No. 12, pp. 1297-1298.
  14. Oberg, K.A., Morlock, S.E., and Caldwell, W.E. (2005). Quality-Assurance Plan for Discharge Measurements Using Acoustic Doppler Current Profilers, US. Geological Survey, Scientific Investigation Report.
  15. RDI (1996). "Acoustic Doppler Current Profilers- Principle of operation, A Practical Primer." San Diego, CA, RD Instruments.
  16. RDI (2003). "WinRiver User's Guide-International Version, A Practical Primer." San Diego, CA, RD Instruments.
  17. RDI (2012). "StreamPro & Section by Section Software Operation Manual." Teledyne RD Instruments, Poway, CA.
  18. Rehmel, M.S. (2006). "Field Evaluation of shallow-water acoustic Doppler current profiler discharge measurements." Proceedings of ASCE-EWRI Congress, May, pp. 21-25, Omaha, NE.
  19. Simpson, M.R. (2001). Discharge measurements using a broad-band acoustic Doppler current profiler, US Geological Survey Open-File Report 01-1.
  20. SonTek (2000). "Doppler Velocity Log for ROV/AUV Applications." SonTek Newsletter, 6(1), SonTek, San Diego, CA.
  21. USGS (2011). "Exposure time for ADCP moving-boat discharge measurements made during steady flow conditions." USGS Office of Surface Water Technical Memorandum 2011.08.