DOI QR코드

DOI QR Code

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine

500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구

  • Received : 2015.02.04
  • Accepted : 2015.06.17
  • Published : 2015.08.01

Abstract

This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

본 논문은 NACA 익형의 블레이드를 가지는 다리우스 수직축 풍력발전기(VAWT)의 성능특성에 대한 연구이다. 다양한 설계변수를 이용한 다리우스 VAWT 의 최적 형상을 예측하기 위해서 블레이드 근처에서 나타나는 공력특성 및 박리유동, 유동과 블레이드 간의 상호작용, 이로 인해 유도되는 토크 및 출력특성 등을 분석하였다. 블레이드의 최적 형상 설계 및 주변 유동과의 상호작용 특성을 보기 위하여 다양한 인자들 (즉, 코드길이, 로터직경, 피치각, 블레이드의 두께비 및 비틀림각 등)을 고려하였다. 본 연구에서 연구결과로는 TSR 가 낮은 영역에서는 솔리디티가 큰 로터가 높은 출력계수를 가지는 반면, TSR 이 높은 영역에서는 솔리디티가 작은 로터가 높은 출력계수를 가진다. 블레이드의 익형이 안쪽으로 향하는 피치각은 $-2^{\circ}$와 비틀림각이 $0^{\circ}$ 일 때, 다리우스형 VAWT 가 최대 출력을 발생하였다.

Keywords

References

  1. IEA Report., 2012, "World Energy Outlook 2012 - Renewable Energy Outlook (Chapter 7)," International Energy Agency.
  2. Gorelov, D. N., 2010, "Energy Characteristics of Darrieus Rotor (Review)," Thermophysics and Aeromechanics, Vol. 17, No. 3, pp. 301-308. https://doi.org/10.1134/S0869864310030017
  3. Paraschivoiu, I., Trifu, O. and Saeed, F., 2009 "H-DarrieusWind Turbine with Blade Pitch Control," International Journal of Rotating Machinery 2009-505343, pp. 1-7.
  4. Fujisawa, N. and Shibuya, S., 2001, "Observations of Dynamic Stall on Darrieus Wind Turbine Blades," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, No. 2, pp. 201-214. https://doi.org/10.1016/S0167-6105(00)00062-3
  5. Ferreira, C.J.S., 2009, "The Near Wake of the VAWT. 2D and 3D Views of the VAWT Aerodynamics," Ph.D. Thesis, Delft University of Technology.
  6. Maitre, T., Achard, J.L., Guitet, L. and Ploesteanu, C., 2005, "Marine Turbine Development: Numerical and Experimental Investigations," Sci. Bull. Timisoara Politechnic Univ, Vol. 50, pp 59-66.
  7. Nabavi, Y., 2008, "Numerical Study of the Duct Shape Effect on the Performance of a Ducted Vertical Axis Tidal Turbine," Msc Thesis, British Columbia University.
  8. Howell, R., Qin, N., Edwards, J. and Durrani, N., 2010, "Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine," Renewable Energy, Vol. 35, pp 412-422. https://doi.org/10.1016/j.renene.2009.07.025
  9. Wolfe, E.P. and Ochs, S.S., 1997, "CFD Calculations of S809 Aerodynamic Characteristics," AIAA aerospace sciences meeting.
  10. Castelli, M. R. and Benini, E., 2011, "Effect of Blade Thickness on Darrieus Vertical-axis Wind Turbine Performance," CSSim 2011, 2nd International Conference on Computer Modelling and Simulation.
  11. Islam, M., Ting, D. S. K. and Fartaj, A., 2008, "Aerodynamic Models for Darrieus-type Straight-bladed Vertical Axis Wind Turbines," Renewable and Sustainable Energy Reviews, Vol. 12, No. 4, pp 1087-1109. https://doi.org/10.1016/j.rser.2006.10.023