DOI QR코드

DOI QR Code

Study on Temperature Control and Optimal Design for Continuous Sterilizer

연속 살균기의 온도제어 및 최적설계에 관한 연구

  • Park, Cheol Jae (School of Mechanical and Automotive Engineering, Daegu Univ.)
  • 박철재 (대구대학교 기계자동차공학부)
  • Received : 2015.02.28
  • Accepted : 2015.05.11
  • Published : 2015.08.01

Abstract

In this paper, we analyzed the problems of a batch-type sterilizer and design a continuous sterilizer to control the temperature deviation. The temperature deviation is analyzed with respect to design parameters such as a nozzle diameter, hole diameter, and nozzle length. The significant temperature parameters are optimized using the response surface methodology. An experimental apparatus is developed using the optimized design parameters. Using a field test, we show that the target temperature is obtained in about 7.3 minutes and the temperature deviation is improved about $0.84^{\circ}C$. The optimized parameters from the test are equal to the analytical parameters.

본 논문에서는 배치식 살균기의 문제점을 분석하여 연속 살균기를 모델링하고 설계하였으며 온도편차를 제어하였다. 살균기의 노즐 직경, 홀 직경, 노즐 길이 등의 설계 파라미터를 이용하여 온도를 해석하였다. 살균기의 온도편차에 중요한 노즐 직경, 제트박스의 직경, 노즐의 홀 피치 등의 설계 파라미터를 반응표면분석법에 의하여 최적화하였다. 그리고 본 연구에서 제안한 설계 파라미터를 이용하여 살균기의 실험장치를 개발하여 온라인으로 테스트를 실시하였다. 온라인 테스트 결과 목표온도까지 상승하는데 약 7.3 min 소요되었고 온도편차는 약 $0.84^{\circ}C$로 양호하였으며 해석적으로 최적화를 실시한 결과와 동일한 최적조건을 도출하였다.

Keywords

References

  1. Park, M. H., 1982, Retort Food, KyoHakSa, Seoul, pp. 110-150.
  2. Chen, G., Campanella, O. H., Corvalan, C. M. and Haley, T. A., 2008, "On-Line Correction of Process Temperature Deviations in Continuous Retorts," Journal of Food Engineering, Vol. 84, Iss. 2, pp. 258-269. https://doi.org/10.1016/j.jfoodeng.2007.05.017
  3. Smout, C., Loey, A. V. and Hendrickx, M., 2001, "Role of Temperature Distribution Studies in the Evaluation and Identification of Processing Conditions for Static and Rotary Water Cascading Retorts," Journal of Food Engineering, Vol. 48, Iss. 1, pp. 61-68. https://doi.org/10.1016/S0260-8774(00)00146-1
  4. Chen, C. R. and Ramaswamy, H. S., 2004, "Multiple Ramp-Variable Retort Temperature Control for Optimal Thermal Processing," Food and Bioproducts Processing, Vol. 82, Iss. 1, pp. 78-88. https://doi.org/10.1205/096030804322985353
  5. Llave, Y. A., Hagiwara, T. and Sakiyama, T., 2012, "Artificial Neural Network Model for Prediction of Cold Spot Temperature in Retort Sterilization of Starch-Based Foods," Journal of Food Engineering, Vol. 109, Iss. 3, pp. 553-560. https://doi.org/10.1016/j.jfoodeng.2011.10.024
  6. Chen, C. R. and Ramaswamy, H. S., 2002, "Modeling and Optimization of Variable Retort Temperature (VRT) Thermal Processing using Coupled Neural Networks and Genetic Algorithms," Journal of Food Engineering, Vol. 53, Iss. 3, pp. 209-220. https://doi.org/10.1016/S0260-8774(01)00159-5
  7. Simpson, R., Figueroa, I. and Teixeira, A., 2007, "Simple, Practical, and Efficient On-Line Correction of Process Deviations in Batch Retort Through Simulation," Food Control, Vol. 18, Iss. 5, pp. 458-465. https://doi.org/10.1016/j.foodcont.2005.12.003
  8. Ryfa, A., Buczynski, R., Chabinski, M., Szlek, A. and Bialecki, R. A., 2014, "Decoupled Numerical Simulation of a Solid Fuel Fired Retort Boiler," Applied Thermal Engineering, Vol. 73, Iss. 1, pp. 794-804. https://doi.org/10.1016/j.applthermaleng.2014.08.029
  9. Simpson, R., Figueroa, I. and Teixeira, A., 2006, "Optimum On-Line Correction of Process Deviations in Batch Retorts through Simulation," Food Control, Vol. 17, Iss. 8, pp. 665-675. https://doi.org/10.1016/j.foodcont.2005.06.004
  10. Simpson, R., Abakarov, A. and Teixeira, A., 2008, "Variable Retort Temperature Optimization using Adaptive Random Search Techniques," Food Control, Vol. 19, Iss. 11, pp. 1023-1032. https://doi.org/10.1016/j.foodcont.2007.10.010
  11. Park, C. J., 2012, "Dynamic Temperature Control with Variable Heat Flux for High Strength Steel," International Journal of Control, Automation, and Systems, Vol. 10, No. 3, pp. 659-665. https://doi.org/10.1007/s12555-012-0325-5
  12. Lee, J. H., 2002, Numerical Heat Transfer and Fluid Flow, Taehun Publishing, Seoul, pp. 54-109.
  13. Dukhan, N., Al-Rammahi, M. A. and Suleiman, A. S., 2013, "Fluid Temperature Measurements Inside Metal Foam and Comparison to Brinkman- Darcy Flow Convection Analysis," International Journal of Heat and Mass Transfer, Vol. 67, pp. 877-884. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.055
  14. Ha, M. Y. and Choi, B. S., 1999, "A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roll Continuous Casting," Trans. Korean Soc. Mech. Eng. B, Vol. 23, No. 1, pp. 12-24. https://doi.org/10.22634/KSME-B.1999.23.1.12
  15. Park, C. J., 2015, "Design of Continuous Sterilizer for Retort Pouch," Journal of the Korean Society for Power System Engineering, Vol. 19, No. 2, pp. 57-63. https://doi.org/10.9726/kspse.2015.19.2.057
  16. Park, C. J., Han, S. H., Lee, D. M. and Kwon, W. H., 2007, "Direct Width Control Systems based on Width Prediction Models in Hot Strip Mill," ISIJ International, Vol. 47, No. 1, pp. 105-113. https://doi.org/10.2355/isijinternational.47.105