References
- A. Abdollahi, The numerical range of a composition operator with conformal automorphism symbol, Linear Algebra Appl. 408 (2005), 177-188. https://doi.org/10.1016/j.laa.2005.06.005
- P. S. Bourdon and J. H. Shapiro, The numerical range of automorphic composition operators, J. Math. Analy. Appl. 251 (2000), no. 2, 839-854. https://doi.org/10.1006/jmaa.2000.7072
- P. S. Bourdon and J. H. Shapiro, When is zero in the numerical range of a composition operator, Integr. Equ. Oper. Theory. 44 (2002), no. 4, 410-441. https://doi.org/10.1007/BF01193669
- C. C. Cowen and B. D. Maccluer, Composition Operators on Spaces of Analytic Fnctions, CRC Press, Boca Raton, 1995.
- K. E. Gustafon and K. M. Rao, The Numerical Range, the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
- P. R. Halmos, Hilbert Space Problem Book, Springer, New York, 1982.
- R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
- J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.
- V. Matache, Numerical ranges of composition operators, Linear Algebra Appl. 331 (2001), no. 1-3, 61-74. https://doi.org/10.1016/S0024-3795(01)00262-2
- W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.
- J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag. 1993.
- R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland Publishing Co., Amsterdam, 1993.