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NUMERICAL RANGE AND SOT-CONVERGENCY

Abdolaziz Abdollahi and Mohammad Taghi Heydari

Abstract. A sequence of composition operators on Hardy space is con-
sidered. We prove that, by numerical range properties, it is SOT-conver-
gence but not converge.

1. introduction

Let ϕ be a holomorphic self-map of the unit disc U := {z ∈ C : |z| < 1}.
The function ϕ induces the composition operator Cϕ, defined on the space of
holomorphic functions on U by Cϕf = f ◦ ϕ. The restriction of Cϕ to various
Banach spaces of holomorphic functions on U has been an active subject of
research for more than three decades and it will continue to be for decades
to come (see [11], [12] and [4]). Let H2 denote the Hardy space of analytic
functions on the open unit disc with square summable Taylor coefficients. In
recent years the study of composition operators on the Hardy space has received
considerable attention.

In this paper we consider the numerical range of elliptic composition opera-
tors on H2. The numerical range of a bounded linear operator A on a Hilbert
space H is the set of complex numbers

W (A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1},
where 〈·, ·〉 denotes the inner product in H.

In [9] V. Matache determined the shape W (Cϕ) when the symbol of the
composition operator is a monomial or an inner function fixing 0. Also he gave
some properties of the numerical range of composition operators in some cases.
In [2] the shapes of the numerical range for composition operators induced
on H2 by some conformal automorphisms of the unit disc specially parabolic
and hyperbolic were investigated. In [2], Bourdon and Shapiro have considered
the question of when the numerical range of a composition operator is a disc
centered at the origin and have shown that this happens whenever the inducing
map is a non elliptic conformal automorphism of the unit disc. They also have
shown that the numerical range of elliptic automorphism with order 2 is an
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ellipse with focus at ±1. In [1], the author has completed their results by
finding the exact value of the major axis of the ellipses. However, for the
elliptic automorphisms with finite order k > 2, this is an open problem yet.

2. Notations and preliminaries

Let U denote the open unit disc in the complex plane, and the Hardy

space H2 the functions f(z) =
∑∞

n=0 f̂(n)z
n holomorphic in U such that∑∞

n=0 |f̂(n)|2 < ∞, with f̂(n) denoting the n-th Taylor coefficient of f . The

inner product inducing the norm of H2 is given by 〈f, g〉 :=
∑∞

n=0 f̂(n)ĝ(n).
The inner product of two functions f and g in H2 may also be computed by
integration:

〈f, g〉 = 1

2πi

∫

∂U

f(z)g(z)
dz

z
,

where ∂U is positively oriented and f and g are defined a.e. on ∂U via radial
limits.

For each holomorphic self map ϕ of U induces on H2 a composition operator

Cϕ, defined by the equation Cϕf = f ◦ϕ (f ∈ H2). A consequence of a famous
theorem of J. E. Littlewood [8] asserts that Cϕ is a bounded operator (see also
[11] and [4]). In fact (see [4])

√
1

1− |ϕ(0)|2 ≤ ‖Cϕ‖ ≤
√

1 + |ϕ(0)|
1− |ϕ(0)| .

In the case ϕ(0) 6= 0 Joel H. Shapiro has been shown that the second inequality
changes to equality if and only if ϕ is an inner function (see [11]).

With each point λ ∈ U we associate the reproducing kernel

Kλ(z) =
1

1− λz
=

∞∑

n=0

λ
n
zn (z ∈ U).

Each kernel function Kλ is holomorphic in a neighborhood of U and hence
belongs to H2. Moreover for each λ ∈ U and f ∈ H2, 〈f,Kλ〉 = f(λ).

A conformal automorphism is a univalent holomorphic mapping of U onto
itself. Each such map is a linear fractional, and can be represented as a product
w.αp, where

αp(z) :=
p− z

1− pz
, (z ∈ U),

for some fixed p ∈ U and w ∈ ∂U (see [10]).
The map αp interchanges the point p and the origin and it is a self-inverse

automorphism of U.
Each conformal automorphism is a bijection map from the sphere C

⋃
{∞}

to itself with two fixed points (counting multiplicity). An automorphism is
called:
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• elliptic if it has one fixed point in the disc and one outside the closed
disc,

• hyperbolic if it has two distinct fixed point on the boundary ∂U, and
• parabolic if there is one fixed point of multiplicity 2 on the boundary
∂U.

For r ∈ U, an r-dilation is a map of the form δr(z) = rz. We call r the
dilation parameter of δr and in the case that r > 0, δr is called positive dilation.
A conformal r-dilation is a map that is conformally conjugate to an r-dilation,
i.e., a map ϕ = α−1 ◦ δr ◦ α, where r ∈ U and α is a conformal automorphism
of U.

For w ∈ ∂U, an w-rotation is a map of the form ρw(z) = wz. We call w
the rotation parameter of ρw. A straightforward calculation shows that every
elliptic automorphism ϕ of U must have the form

ϕ = αp ◦ ρw ◦ αp

for some p ∈ U and some w ∈ ∂U.
Let A be a (bounded linear) operator on a complex Hilbert space H. The

numerical range of A is the set

W (A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
in the complex plane, where 〈·, ·〉 denotes the inner product in H. In other
words, W (A) is the image of the unit sphere {x ∈ H : ‖x‖ = 1} of H under the
(bounded) quadratic form x 7→ 〈Ax, x〉.

Some properties of the numerical range follow easily from the definition.
For one thing, the numerical range is unchanged under the unitary equivalence
of operators: W (A) = W (U∗AU) for any unitary U . It also behaves nicely
under the operation of taking the adjoint of an operator: W (A∗) = {z : z ∈
W (A)}. One of the most fundamental properties of the numerical range is its
convexity, stated by the famous Toeplitz-Hausdorff Theorem (see [5] and [6]).
Other important property of W(A) is that its closure contains the spectrum of
the operator. W(A) is a connected set and, in the finite dimensional case, is
compact.

One more important property of the numerical range map, A → W (A), that
we need in this paper, is the continuity of it. For the convergence of compact
subsets of the plane, we use the topology induced by the Hausdorff metric [6].

Let K1 and K2 be two compact subsets of plane. The Hausdorff distance
∆(K1,K2) is the minimal number r such that the closed r-neighborhood of any
x in K1 contains at least one point y of K2 and vice versa. In other words,

∆(K1,K2) = max{ sup
x∈K1

inf
y∈K2

|x− y|, sup
y∈K2

inf
x∈K1

|x− y|}.

The next theorem says that the closure of the numerical range induces a
continuous map on operators when the latter is endowed with the norm topol-
ogy.
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Theorem 2.1. If H is a Hilbert space and {An} is a sequence of bounded linear

operators on H which converges to the bounded linear operator A in norm, then

W (An) converges to W (A) in the Hausdorff metric.

In [9] V. Matache determined the shape of W (Cϕ) in the case when ϕ is a
monomial or an inner function fixing 0. Also he gave some properties of the
numerical range of composition operators in some cases. He also showed that
if ϕ = a, 0 < |a| < 1, then W (Cϕ) is a closed elliptical disc whose boundary is
the ellipse of foci 0 and 1, having horizontal axis of length 1√

1−|a|2
. Also, the

numerical ranges of some compact composition operators was presented.
In [2] the shapes of the numerical range for composition operators induced

on H2 by some conformal automorphisms of the unit disc specially parabolic
and hyperbolic were investigated. The authors proved, among other things,
the following results:

(1) If ϕ is a conformal automorphism of U is either parabolic or hyperbolic,
then W (Cϕ) is a disc centered at the origin; moreover this disc is

contained in the essential numerical range We(Cϕ) =
⋂
W (Cϕ +K),

the intersection being taken over all K of compact operators.
(2) If ϕ is a hyperbolic automorphism of U with antipodal fixed points and

it is conformally conjugate to a positive dilation z 7→ rz (0 < r < 1),
then W (Cϕ) is the open disc of radius 1/

√
r centered at the origin.

(3) If ϕ is elliptic and conformally conjugate to a rotation z 7→ ωz (|ω| = 1)
and ω is not a root of unity, then W (Cϕ) is a disc centered at the origin.

(4) If T 6= ±I is an operator on the Hilbert space H with T 2 = I, then
W (T ) is a (possibly degenerate) elliptical disc with foci at ±1. In
particular, it is not a circular disc.

(5) If ϕ is an elliptic automorphism of U with rotation parameter (multi-
plier) −1, then W (Cϕ) is a (possibly degenerate) ellipse with foci ±1.
The degenerate case occurs if and only if Cϕ(0) = 0, in which case
Cϕ(z) ≡ −z.

In [3] the authors proved that the numerical range of any composition op-
erator, except for the identity, contains the origin in its closure. Using this as
motivation, they focus on when 0 ∈ W (Cϕ). The authors developed methods
that produce complete answers to this and related questions for maps ϕ that
fix a point p in U. They showed in this case that 0 /∈ W (Cϕ) if and only
if there is an r ∈ (0, 1] such that |p| ≤ √

r and ϕ(z) = αp(rαp(z)), where
αp(z) = (p − z)/(1 − pz). Further, for such a map ϕ they proved that Cϕ is
sectorial, i.e., W (Cϕ) ⊂ {0}⋃{z ∈ C : |Argz| ≤ θ} for some θ, if |p| < √

r but
not when |p| = √

r.

Theorem 2.2. Suppose wk = e
2πi
k and ϕk = αp ◦ ρwk

◦ αp. Then W (Cϕk
)

tends to the U=the closed unit disc, as k → ∞.
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Proof. Let ϕp = αp ◦ ρw ◦ αp and p = η|p| for some η ∈ ∂U. It follows easily
that ϕp = ρη ◦ ϕ|p| ◦ ρη−1 and hence Cϕp

= Cρ
η−1

◦Cϕ|p|
◦Cρη

. Since V = Cρη

is the unitary composition operator induced on H2 by ρη, we have

W (Cϕp
) = W (Cρ

η−1
◦ Cϕ|p|

◦ Cρη
) = W (Cϕ|p|

).

Hence without loss of generality we may assume that 0 < p < 1. Put ej(z) =
(αp(z))

j for j = 0, 1, 2, . . ., k − 1. By a straightforward calculation we have

Cϕk
ej(z) = wj

kej(z), i.e., ej is the eigenfunction of Cϕk
corresponding to

eigenvalue wj
k, which implies wj

k ∈ W (Cϕk
). Let Tk be the convex hull of

{1, wk, w
2
k, . . . , w

k−1
k }. Since W (Cϕk

) is bounded, convex and r(Cϕk
)= the

numerical radius of Cϕk
≤ ‖Cϕk

‖,
Tk ⊆ W (Cϕk

) ⊆ B(0, ‖Cϕk
‖).

Then

(1) ∆(W (Cϕk
), Tk) = sup

x∈W (Cϕk
)

inf
y∈Tk

|x− y| ≤ ‖Cϕk
‖ − cos

π

k
.

On the other hand

(2) ∆(Tk,U) → 0 as k → 0.

Also, since ϕk is an inner function,

(3) ‖Cϕk
‖ =

√
|1− p2wk|+ p|1− wk|
|1− p2wk| − p|1− wk|

→ 1 as k → ∞.

The proof is completed by combining (1), (2) and (3). �

3. Continuity with respect to symbols ϕ

An elliptic automorphism ϕ of U that does not fix the origin must have the
form ϕ = αp ◦ ρw ◦ αp, where

ρw(z) = wz (z ∈ U)

for some fixed p ∈ U − {0} and w ∈ ∂U. Let us call w the rotation parame-
ter(multiplier) of ϕ. If we wish to show this dependence of ϕ on p and w, we
will denote the elliptic automorphism αp ◦ ρw ◦ αp by ϕp,w.

If such a map ϕ is not periodic, then the closure of W (Cϕ) is a disc centered
at the origin [2]. If ϕ is periodic then, surprisingly, the situation seems even
murkier: For period 2 has been shown the closure of W (Cϕ) is an elliptical disc
with foci at ±1 (Corollary 4.4 of [2]). It is easy to see that W (Cϕ) is open,
also in [1], the author completely determined W (Cϕ) for period 2. But for
period k > 2 then all we can say is that the numerical range of Cϕ has k-fold
symmetry and we strongly suspect that in this case the closure is not a disc.

Recall that a sequence of bounded linear operators {An} on Hilbert space H
is said to converge to A in the strong operator topology or SOT if
‖(An −A)x‖ → 0 for any vector x in H.
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In this section we prove that the composition operators is continuous as a
function of the symbol ϕ. In fact, we prove the following theorem:

Theorem 3.1. Let {ϕn} be a sequence of conformal automorphism of the unit

disc. If ϕn → ϕ uniformly on compact subsets of U as n → ∞, then for each

f ∈ H2,

Cϕn
f → Cϕf as n → ∞.

Indeed

Cϕn
→ Cϕ

in SOT.

Proof. Problem 9(a), page 34 of [11] implies that ϕn → ϕ weakly. On the other
hand

0 ≤ ‖ϕn − ϕ‖2 = ‖ϕn‖2 − 2Re〈ϕn, ϕ〉+ ‖ϕ‖2 ≤ 2(1− Re〈ϕn, ϕ〉) → 0

since ‖ϕ‖ = 1. So ‖ϕn − ϕ‖ → 0.
Let pk(z) = zk, k = 0, 1, 2, . . .. Then

‖(Cϕn
− Cϕ)pk‖ =

∫

∂U

|(ϕn(z))
k − (ϕ(z))k|2dm(z)

≤ k2
∫

∂U

|(ϕn(z))− (ϕ(z))|2dm(z)

= k2‖ϕn − ϕ‖,
which tends to zero as n → ∞. Hence ‖(Cϕn

−Cϕ)P‖ → 0 for any polynomial
P . Let f ∈ H2 and {Pk} be a sequence of polynomials which converges to f
in H2. Because ϕn and ϕ are inner functions and limn→∞ |ϕn(0)| = |ϕ(0)|, for
each positive integer n, we have

‖(Cϕn
− Cϕ)‖ ≤

√
1 + |ϕn(0)|
1− |ϕn(0)|

+

√
1 + |ϕ(0)|
1− |ϕ(0)| ≤ M,

where M is a positive real number. Now let ε > 0 be given. Then there exists
positive integer k0 such that ‖f − Pk0

‖ < ε/2M . Also there exists a positive
integer N such that n ≥ N implies ‖(Cϕn

− Cϕ)Pk0
‖ < ε/2, which implies

‖(Cϕn
− Cϕ)f‖ = ‖(Cϕn

− Cϕ)(f ± Pk0
)‖

≤ ‖(Cϕn
− Cϕ)(f − Pk0

)‖+ ‖(Cϕn
− Cϕ)Pk0

‖
≤ ε.

Therefore ‖(Cϕn
− Cϕ)f‖ → 0 as n → ∞, and the proof is complete now. �

Corollary 3.2. Suppose wk = e
2πi
k and ϕk = αp ◦ ρwk

◦ αp. Then

Cϕk
→ Cz

as k → ∞ in SOT.



COMPOSITION OPERATORS 175

Proof. By a simple computation for each z ∈ ∂U, we have

|ϕk(z)− z| = |1− wk||p− z||1− pz|
|1− p2wk − p(1− wk)z

| ≤ |1− wk|(1 + p)2

|1− p2wk| − |p(1 − wk)|
→ 0

as k → ∞. Since the right side of the above inequality is independent from
z, ϕk(z) → z uniformly on ∂U and by maximum modulo theorem, ϕk(z) → z
uniformly on compact subsets of U. Hence the conclusion follows from Theorem
3.1. �

Corollary 3.3. Let ϕk be as defined in Corollary 3.2. Then 〈Cϕk
f, f〉 → 1 as

k → ∞ if f ∈ H2 with ‖f‖ = 1.

Proof. By corollary 3.2 we have

|〈Cϕk
f, f〉 − ‖f‖2| = |〈Cϕk

f − f, f〉|
≤ ‖Cϕk

f − f‖‖f‖ → 0.

So if ‖f‖ = 1, then 〈Cϕk
f, f〉 → 1 as k → ∞ or 1 is the accumulation point. �

Corollary 3.4. If ϕk = αp ◦ ρwk
◦ αp, then Cϕk

is a divergence sequence in

norm topology.

Proof. Since W (Cz) = {1} 6= U = limW (Cϕk
), so the proof easily follows from

Theorems 2.1, 2.2 and Corollary 3.2. �
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