DOI QR코드

DOI QR Code

Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology

반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화

  • Kim, Hyun-do (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Yun, Chul-Won (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Choi, Jong-il (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute)
  • 김현도 (전남대학교 생물공학과) ;
  • 윤철원 (전남대학교 생물공학과) ;
  • 최종일 (전남대학교 생물공학과) ;
  • 한세종 (극지연구소 극지생명과학연구부)
  • Received : 2014.09.29
  • Accepted : 2014.11.24
  • Published : 2015.08.01

Abstract

This study was conducted to optimize the medium composition for cold-adaptive protease production of Enterobacteriaceae sp. by response surface methodology (RSM). Yeast extract, and TritonX-100 were identified as the significant factors affecting protease from one-factor-at-a-time method. RSM studies for optimizing protease production of Enterobacteriaceae sp. have been carried out for three parameters including yeast extract concentration, TritonX-100 concentration, and culture pH. These significant factors were optimized as 6.690 g/L yeast extract, 0.018 g/L Triton$^{TM}$ X-10, and pH 6.677. The experimentally obtained protease activity was 8.03 U /L, and it became 1.5-fold increase before optimization.

본 논문에서는 저온활성 protease의 생산을 최적화하기 위하여 극지 미생물인 Enterobacteriaceae sp. PAMC 25617의 반응표면분석법을 이용한 배지의 최적화를 수행하였다. One-factor-at-a-time 방법을 이용하여 yeast extract, TritonX-100이 protease의 생산에 영향을 미치는 주요인자인 것을 확인하였다. 물리적인 환경 요인으로 pH를 추가하여 반응표면분석 방법을 이용한 최대 protease 생산 농도를 갖는 각 인자들의 농도를 확인한 결과 5 g/L peptone, 3 g/L malt extract, 10 g/L $C_6H_{12}O_6$, 6.690 g/L yeast extract, 0.018 g/L TritonX-100의 농도에 pH 6.777의 조건에서 미생물을 배양하였을 경우, 최대 10.049 U/L의 protease가 생산될 수 있는 것으로 예측되었다. 실제 배양 결과 8.03 U/L의 protease가 얻어졌으며, 최적화 이전의 생산농도와 비교하여 150% 이상의 증가를 이루었다. 결과적으로 배지최적화를 통한 protease 생산량의 증가에 반응표면분석법의 적용이 유용하다는 것을 확인할 수 있는다. 이러한 결과로부터, 배지 최적화를 이용한 극지 미생물 유래 cold-adapted protease 생산량의 증가가 여러 산업 분야에서 유용하게 이용될 수 있을 것으로 생각된다.

Keywords

References

  1. Nichols, D., Bowman, J., Sanderson, K., Nichols, C. M., Lewis, T., McMeekin, T. and Nichols, P. D., "Developments with Antarctic Microorganisms: Culture Collections, Bioactivity Screening, Taxonomy, PUFA Production and Cold-adapted Enzymes," Curr. Opin. Biotechnol." 10, 240-246(1999). https://doi.org/10.1016/S0958-1669(99)80042-1
  2. Antranikian, G. and Egorova, K., "Extremophiles, a Unique Resource of Biocatalysts for Industrial Biotechnology," Physiology and Biochemistry of Extremophiles. ASM Press. Washington, 361-406(2007).
  3. Huston, A. L., "Biotechnological Aspects of Cold-adapted Enzymes," In Psychrophiles: From Biodiversity to Biotechnology. Springer. Berlin. Heidelberg, 347-363(2008).
  4. Kim, D. K., Park, H. J., Lee, Y. M., Hong, S. G., Lee, H. K. and Yim, J. H., "Screening for Cold-Active Protease-Producing Bacteria from the Culture Collection of Polar Microorganisms and Characterization of Proteolytic Activities," Korean J. Microbiol., 46, 73-79(2010).
  5. Zhu, H. Y., Tian, Y., Hou, Y. H. and Wang, T. H., "Purification and Characterization of the Cold-active Alkaline Protease from Marine Cold-adaptive Penicillium Chrysogenum FS010," Mol. Boil. rep., 36, 2169-2174(2009). https://doi.org/10.1007/s11033-008-9431-0
  6. Georlette, D., Blaise, V., Collins, T., D'Amico, S., Gratia, E., Hoyoux, A., Marx, J., Sonan, G., Feller, G. and Gerday, C., "Some Like it Cold: Biocatalysis at Low Temperatures," FEMS microbial. Rev., 28, 25-42(2004).
  7. Yang, J., Li, J., Mai, Z., Tian, X. and Zhang, S., "Purification, Characterization, and Gene Cloning of a Cold-adapted Thermolysin-Like Protease from Halobacillus sp. SCSIO 20089," J. Biosci. Bioeng., 115, 628-632(2013). https://doi.org/10.1016/j.jbiosc.2012.12.013
  8. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M. A. and Feller G., "Coldadapted Enzymes: from Fundamentals to Biotechnology," Trends. Biotechnol., 18, 103-107(2000). https://doi.org/10.1016/S0167-7799(99)01413-4
  9. Dastager, S. G., Dayanand, A., Li, W. J., Kim, C. J., Lee, J. C., Park, D. J., Tian, X. P. and Raziuddin, Q.S., "Proteolytic Activity from An Alkali-thermotolerant Streptomyces gulbargensis sp. nov," Curr. Microbiol., 57, 638-642(2008). https://doi.org/10.1007/s00284-008-9257-y
  10. Kirk, O., Borchert, T. V. and Fuglsang, C. C., "Industrial Enzyme Applications," Curr. Opin. Biotechnol., 13, 345-351(2002). https://doi.org/10.1016/S0958-1669(02)00328-2
  11. Cherry, J. R. and Fidantsef, A. L., "Directed Evolution of Industrial Enzymes: An Update," Curr. Opin. Biotechnol., 14, 438-443(2003).
  12. Daniel R. M., Toogood, H. S. and Bergquist, P. L., "Thermostable Proteases," Biotech. Genet. Eng. Rev., 13, 51-100(1996). https://doi.org/10.1080/02648725.1996.10647924
  13. Gupta, R., Beg, Q. and Lorenz, P., "Bacterial Alkaline Proteases: Molecular Approaches and Industrial Applications," Appl. Microbial. Biotechnol., 59, 15-32(2002). https://doi.org/10.1007/s00253-002-0975-y
  14. Anisworth, S. J., "Soap & Detergents," Chem. Eng. News., 70, 27-37(1992).
  15. Marx, J. C., Collins, T., D'Amico, S., Feller, G. and Gerday, C., "Cold-adapted Enzymes from Marine Antarctic Microorganisms," Marine Biotechnol., 9, 293-304(2007). https://doi.org/10.1007/s10126-006-6103-8
  16. Cavicchioli, R., Siddiqui, K. S., Andrews, D. and Sowers, K. R., "Low-temperature Extremophiles and Their Applications," Curr. Opin. Biotechnol., 13, 253-261(2002). https://doi.org/10.1016/S0958-1669(02)00317-8
  17. Wang, Q., Hou, Y., Xu, Z., Miao, J. and Li, G., "Optimization of Cold-active Protease Production by the Psychrophilic Bacterium Colwellia sp. NJ341 with Response Surface Methodology," Biores. Technol., 99, 1926-1931(2008). https://doi.org/10.1016/j.biortech.2007.03.028
  18. Irwin, J. A., Alfredsson, G. A., Lanzetti, A. J., Gudmundsson, H. M. and Engel, P. C., "Purification and Characterisation of a Serine Peptidase from the Marine Psychrophile Strain PA-43," FEMS Microbiol. Let., 201, 285-290(2001). https://doi.org/10.1111/j.1574-6968.2001.tb10770.x
  19. Siddiqui, K. S. and Cavicchioli, R., "Cold-adapted Enzymes," Annual Rev. Biochem., 75, 403-433(2006). https://doi.org/10.1146/annurev.biochem.75.103004.142723
  20. Kackar, R. N., "Off-line Quality Control, Parameter Design, and the Taguchi Method," J. Quality Technol., 17, 176-188(1985). https://doi.org/10.1080/00224065.1985.11978964
  21. Ghani, J. A., Choudhury, I. A. and Hassan, H. H. "Application of Taguchi Method in the Optimization of End Milling Parameters," J. Mater. Process. Technol., 145, 84-92(2004). https://doi.org/10.1016/S0924-0136(03)00865-3
  22. Tsai, J. T., Liu, T. K. and Chou, J. H. "Hybrid Taguchi-genetic Algorithm for Global Numerical Optimization," Evolutionary Computation, IEEE Transactions on, 8, 365-377(2004). https://doi.org/10.1109/TEVC.2004.826895
  23. Puri, S., Beg, Q. K. and Gupta, R., "Optimization of Alkaline Protease Production from Bacillus sp. By Response Surface Methodology," Curr, Microbiol., 44, 286-290(2002). https://doi.org/10.1007/s00284-001-0006-8
  24. Adinarayana, K. and Ellaiah, P., "Response Surface Optimization of the Critical Medium Components for the Production of Alka-Line Protease by a Newly Isolated Bacillus sp.," J. Pharmacy. Pharmaceutical Sci., 5, 272-278(2002).
  25. Dutta, J. R., Dutta, P. K. and Banerjee, R., "Optimization of Culture Parameters for Extracellular Protease Production from a Newly Isolated Pseudomonas sp. Using Response Surface and Artificial Neural Network Models," Proc. Biochem., 39, 2193-2198(2004). https://doi.org/10.1016/j.procbio.2003.11.009
  26. Hanlon, G. W., Hodges, N. A. and Russel, A. D., "The Influence of Glucose, Ammonium and Magnesium Availability on the Production of Protease and Bacitracin by Bacillus Licheniformis," J. General Microbiol., 128, 845-851(1982).
  27. Tabaraki, R. and Rastgoo, S., "Comparison Between Conventional and Ultrasound-assisted Extractions of Natural Antioxidants from Walnut Green Husk," Korean J. Chem. Eng., 31, 676-683(2014) https://doi.org/10.1007/s11814-013-0279-1
  28. İlbay, Z., Sahin, S. and Buyukkabasakal, K., "A Novel Approach for Olive Leaf Extraction Through Ultrasound Technology: Response Surface Methodology Versus Artificial Neural Networks," Korean J. Chem. Eng., 31, 1661-1667(2014). https://doi.org/10.1007/s11814-014-0106-3
  29. Toon, C. H., Bok, H. S., Choi, D. K. and Row, K. H., "Optimization Condition of Astaxanthin Extract from Shrimp Waste Using Response Surface Methodology," Korean Chem. Eng. Res., 50, 545-550(2012). https://doi.org/10.9713/kcer.2012.50.3.545
  30. Kin, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50, 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  31. Thys, R., Guzzon, S. O., Cladera-Olivera, F. and Brandelli, A., "Optimization of Protease Production by Microbacterium sp. in Feather Meal Using Response Surface Methodology," Proc. Biochem., 41, 67-73(2006). https://doi.org/10.1016/j.procbio.2005.03.070
  32. De Coninck, J., Bouquelet, S., Dumortier, V., Duyme, F. and Verdier-Denantes, I., "Industrial Media and Fermentation Process for Improved Growth and Protease Production by Tetrahymena thermophila BIII," J. Ind. Microbiol. Biotechnol., 24, 285-290(2000). https://doi.org/10.1038/sj.jim.2900826
  33. Plotnick, M. I., Rubin, H. and Schechter, N. M., "The Effects of Reactive Site Location on the Inhibitory Properties of the Serpin ${\alpha}_{1}$ - Antichymotrypsin," J. Biol. Chem., 277, 29927-29935(2002). https://doi.org/10.1074/jbc.M202374200
  34. McKeller, R. C. and Cholette, H., "Synthesis of Extracellular Proteinase by Pseudomonas fluorescens Under Conditions of Limiting Carbon, Nitrogen and Phosphate," Appl. Biochem. Microbiol., 47, 1224-1227(1984).

Cited by

  1. 반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화 vol.54, pp.1, 2015, https://doi.org/10.9713/kcer.2016.54.1.140
  2. Medium Optimization and Proteome Analysis of Protease Production by Janthinobacterium sp. vol.25, pp.5, 2015, https://doi.org/10.1007/s12257-020-0110-x