DOI QR코드

DOI QR Code

Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode

은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승

  • Noh, Young Moo (Department of Chemical Engineering, Chungnam National University) ;
  • Jin, Si Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Jeong, Seong-Geun (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Nam Young (Department of Chemical Engineering, Chungnam National University) ;
  • Rho, Changhyun (Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 노영무 (충남대학교 화학공학과) ;
  • 진시형 (충남대학교 화학공학과) ;
  • 정성근 (충남대학교 화학공학과) ;
  • 김남영 (충남대학교 화학공학과) ;
  • 노창현 (한국원자력연구원 생명공학연구부) ;
  • 이창수 (충남대학교 화학공학과)
  • Received : 2014.10.07
  • Accepted : 2014.11.24
  • Published : 2015.08.01

Abstract

This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.

본 연구에서는 패러데이 모트를 사용한 기존의 피코리터 주입용 미세유체 칩에 은 나노입자를 이용한 전극을 추가하여 전압을 낮추며 효율을 높이는 실험을 수행하였다. 먼저, 복잡한 제조공정에서 탈피하여 은 나노입자 용액을 한 방울 떨어뜨리는 간단한 과정만으로 미세유체 피코리터 주입기 내에 전극을 제조하였다. 본 개념을 통한 은 나노입자 전극과 패러데이 모트가 통합된 미세유체 칩은 은 나노입자 전극을 사용하지 않는 기존 미세유체 칩의 피코리터 주입 시작 전압인 260 V 보다 낮은 전압인 180 V에서 피코리터 주입이 작동되었다. 또한 미세유체 피코리터 주입기는 피코리터 주입 부피를 7.5 pL부터 27.5 pL까지 정밀하게 조절할 수 있음을 주된 장점으로 하고 있다. 본 미세유체 피코리터 주입기는 미세유체 시스템의 새로운 기능을 설계함으로써 각 연구분야를 탐구할 유용한 플랫폼으로 기대되고 있다.

Keywords

References

  1. Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). https://doi.org/10.1038/nature05058
  2. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).
  3. Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013). https://doi.org/10.1016/j.bios.2013.03.031
  4. Jang, S. C., Jeong, H. H. and Lee, C. S., "Analysis of Pseudomonas Aeruginosa Motility in Microchannels," Korean Chem. Eng. Res., 50, 743-748(2012).
  5. Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas Aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26(2), 351-6(2010). https://doi.org/10.1016/j.bios.2010.08.006
  6. Kang, S. M., Choi, C. H., Hwang, S., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion Using Hydrodynamic Control," Korean Chem. Eng. Res., 50, 733-737(2012). https://doi.org/10.9713/kcer.2012.50.4.733
  7. Nam, J. O., Choi, C. H., Kim J., Kang, S. M. and Lee, C. S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51(5), 597-601(2013). https://doi.org/10.9713/kcer.2013.51.5.597
  8. Ko, K. K. and Kim, I. H., "Lysozyme Crystallization in Dropletbased Microfluidic Device," Korean Chem. Eng. Res., 51(6), 760-765(2013). https://doi.org/10.9713/kcer.2013.51.6.760
  9. Song, Y. S. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52(5), 632-637(2014). https://doi.org/10.9713/kcer.2014.52.5.632
  10. Jeong, H. H., Noh, Y. M., Jang, S. C. and Lee, C. S., "Dropletbased Microfluidic Device for High-throughput Screening," Korean Chem. Eng. Res., 52(2), 141-153(2014). https://doi.org/10.9713/kcer.2014.52.2.141
  11. Jin, S. H., Kim, J., Jang, S. C., Noh, Y. M. and Lee, C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52(1), 106-112(2014). https://doi.org/10.9713/kcer.2014.52.1.106
  12. Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J. and Hansen, C. L., "A Programmable Droplet-based Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and Microbial Communities," Proc. Natl. Acad. Sci. USA, 109(20), 7665-7670(2012).
  13. Miller, O. J., Harrak, A. E., Mangeat, T., Baret, J. C., Frenz, L., Debs, B. E., Mayot, E., Samuels, M. L., Rooney, E. K., Dieu, P., Galvan, M., Link, D. R. and Griffiths, A. D., "High-resolution Dose-response Screening Using Droplet-based Microfluidics," Proc. Natl. Acad. Sci. USA, 109(2), 378-383(2012).
  14. Baroud, C. N., de Saint Vincent, M. R. and Delville, J. P., "An Optical Toolbox for Total Control of Droplet Microfluidics," Lab Chip, 7(8), 1029-1033(2007). https://doi.org/10.1039/b702472j
  15. Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008). https://doi.org/10.1039/b813325e
  16. Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid. Nanofluid., 3, 239-243(2007). https://doi.org/10.1007/s10404-006-0121-8
  17. Xu, B., Nguyen, N. and Wong, T. N., "Temperature-induced Droplet Coalescence in Microchannels," Biomicrofluidics, 6, 012811(2012). https://doi.org/10.1063/1.3630124
  18. Mazutis, L., Baret, J. C., Treacy, P., Skhiri, Y., Araghi, A. F., Ryckelynck, M., Taly, V. and Griffiths, A. D., "Multi-step Microfluidic Droplet Processing: Kinetic Analysis of an in vitro Translated Enzyme," Lab Chip, 9(20), 2902-2908(2009). https://doi.org/10.1039/b907753g
  19. Zagnoni, M., Lain, G. L. and Cooper, J. M., "Electrocoalescence Mechanisms of Microdroplets Using Localized Electric Fields in Microfluidic Channels," Langmuir, 26(18), 14443-14449(2010). https://doi.org/10.1021/la101517t
  20. Ahn, K. and Agresti, J., "Electrocoalescence of Drops Synchronized by Size-dependent Flow in Microfluidic Channels," Appl. Phys. Lett., 88, 264105(2006). https://doi.org/10.1063/1.2218058
  21. Mazutis, L. and Griffiths, A. D., "Selective Droplet Coalescence Using Microfluidic Systems," Lab Chip, 12(10), 1800-1806(2012). https://doi.org/10.1039/c2lc40121e
  22. Niu, X., Gielen, F., Edel, J. B. and deMello, A. J., "A Microdroplet Dilutor for High-throughput Screening," Nat. Chem., 3(6), 437-442(2011). https://doi.org/10.1038/nchem.1046
  23. Abate, A. R., Hung, T., Mary, P., Agresti, J. J. and Weitz, D. A., "High-throughput Injection with Microfluidics Using Picoinjectors," Proc. Natl. Acad. Sci. USA, 107(45), 19163-19166(2010).
  24. Sciambi, A. and Abate, A. R., "Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes," Lap Chip, 14(15), 2605-2609(2014). https://doi.org/10.1039/c4lc00078a
  25. Khosla, A., "Nanoparticle-doped Electrically-conducting Polymers for Flexible Nano-micro Systems," Interface, 21, 67(2012).
  26. Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., Koster, S., Duan, H., Humphry, K. J., Scanga, R. A., Johnson, J. S., Pisignano, D. and Weitz, D. A., "Biocompatible Surfactants for Water-in-fluorocarbon Emulsions," Lab Chip, 8(10), 1632-1639(2008). https://doi.org/10.1039/b806706f
  27. Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z. D., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem. Int. Ed. Engl, 45(16), 2556-2560(2006). https://doi.org/10.1002/anie.200503540
  28. Sciambi, A. and Abate, A. R., "Adding Reagent to Droplets with Controlled Rupture of Encapsulated Double Emulsions," Biomicrofluidics, 7, 044112-1(2013). https://doi.org/10.1063/1.4817793
  29. Zhou, J., Ren, K., Zheng, Y., Su, J., Zhao, Y., Ryan, D. and Wu, H., "Fabrication of a Microfluidic Ag/AgCl Reference Electrode and Its Application for Portable and Disposable Electrochemical Microchips," Electrophoresis, 31, 3083-3089(2010). https://doi.org/10.1002/elps.201000113
  30. O'Donovan, B., Eastburn, D. J. and Abate, A. R., "Electrode-free Picoinjection of Microfluidic Drops," Lap Chip, 12(20), 4029-4032(2012). https://doi.org/10.1039/c2lc40693d
  31. Rhee, M., Light, Y. K., Yilmaz, S., Adams, P. D., Saxena, D., Meagher, R. J. and Singh, A. K., "Pressure Stabilizer for Reproducible Picoinjection in Droplet Microfluidic Systems," Lap Chip, 14(23), 4533-4539(2014). https://doi.org/10.1039/C4LC00823E