DOI QR코드

DOI QR Code

Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents

  • Received : 2015.05.20
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

To investigate the tendency of $Li^+$ exchange from polar organic solvents, $Li^+$-ion exchange into zeolite Y (Si/Al = 1.56) was attempted by undried methanol (crystal 1) and formamide (crystal 2) solvent. Two single crystals of Na-Y were treated with 0.1 M LiNO3 in each of the two solvents at 323 K, followed by vacuum dehydration at 723 K. Their structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. In both structures, $Li^+$ for $Na^+$ ions filled preferentially sites I' and II. The remaining $Na^+$ ions occupied sites I', II, and III' in both structures, in additional to above sites, and $Na^+$ ions occupied site I in crystal 2. While the 68 % exchange of $Li^+$ for $Na^+$ was achieved from undried methanol, only 40 % exchange was observed from undried formamide, indicating that the undried methanol was more effective than undried formamide as solvent for $Li^+$ exchange under the conditions employed.

Keywords

References

  1. Arvai, A.J., and C. Nielsen. 1983. ADSC Quantum- 210 ADX Program, Area Detector System Corporation; Poway, CA, USA
  2. Bae, D. and K. Self. 1999. Structures of cobalt(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 33: 265-280. https://doi.org/10.1016/S1387-1811(99)00146-8
  3. Bae, D. and K. Self. 2000. Extensive intrazeolitic hydrolysis of Zn(II): partials structures of partially and fully hydrated Zn(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 40: 233-245. https://doi.org/10.1016/S1387-1811(00)00254-7
  4. Break, D.W. 1974. Zeolite Molecular Sieves, Wiley & Sons, New York. p 93.
  5. Bruker-AXS (ver 6.12), XPREP. 2001. Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Canfield, G.M., M. Bizimis, and S.E. Latturner. 2007. Sodalite ion exchange in polyethyleneoxide oligomer solvents. J. Mater. Chem. 17: 4530-4534. https://doi.org/10.1039/b709579a
  7. Canfield, G.M., M. Bizimis, and S.E. Latturner. 2010. Transition-Metal ion exchange using poly(ethylene glycol) oligomers as solvents. Chem. Mater. 22: 330- 337. https://doi.org/10.1021/cm901988f
  8. Cromer, D.T. 1965. Anomalous dispersion corrections computed from self-consistent field relativistic dirac-slater wave functions. Acta Crystallogr. 18: 17-23. https://doi.org/10.1107/S0365110X6500004X
  9. Doyle, P.A., and P.S. Turner. 1968. Relativistic hartree-fock X-ray and electron scattering factors. Acta Crystallogr. Sect. A. 24: 390-397. https://doi.org/10.1107/S0567739468000756
  10. Feuerstein, M., and R.F. Lobo. 1998. Characterization of Li cations in zeolite LiX by solid-satate NMR spectroscopy and neutron diffraction. Chem. Mater. 10: 2197-2204. https://doi.org/10.1021/cm980112d
  11. Feuerstein, M., R.J. Accardi, and R.F. Lobo. 2000. Adsorption of nitrogen and oxygen in the zeolite LiA and LiX investigated by $^6Li$ and $^7Li$ MAS NMR spectroscopy. J. Phy. Chem. B. 104: 10282-10287. https://doi.org/10.1021/jp000771p
  12. Forano, C., R.C.T. Slade, E. Krogh Andersen, I.G. Krogh Andersen, and E. Prince. 1989. Neutron diffraction determination of full structures of anhydrous Li-X and Li-Y zeolites. J. Solid State Chem. 82: 95-102. https://doi.org/10.1016/0022-4596(89)90227-2
  13. Freude, D., S. Beckert, F. Stallmach, R. Kurzhals, D. Taschner, H. Toufar, J. Karger, and J. Haase. 2013. Ion and water mobility in hydrated Li-LSX zeolite studied by $^1H$, $^6Li$ and $^7Li$ NMR spectroscopy and diffusometry. Micropor. Mesopor. Mater.172: 174-181. https://doi.org/10.1016/j.micromeso.2013.01.011
  14. Herden, H., W.D. Einicke, R. Scholler, W.J. Mortier, L.R. Gellens, and J.B. Uytterhoeven. 1982. Location of Li-ions in synthetic zeolites X and Y. Zeolite. 2: 131-134. https://doi.org/10.1016/S0144-2449(82)80014-6
  15. Ho, K.H., H.S. Lee, B.C. Leano, T. Sun, and K. Seff. 1995. Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites. 15: 377-381. https://doi.org/10.1016/0144-2449(94)00063-X
  16. Ibers, J.A., and W.C. Hamilton. 1974a. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 71-98.
  17. Ibers, J.A., and W.C. Hamilton. 1974b. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 148-150.
  18. Kim, H.S., D. Bae, W.T. Lim, and K. Seff. 2012a. $Li^+$ exchange into zeolite Na-Y (FAU) from aqueous methanol. Single-crystal structures of fully dehydrated Li, Na-Y. J. Phy. Chem. C. 116: 9009-9018. https://doi.org/10.1021/jp300321x
  19. Kim, H.S., S.O. Ko, and W.T. Lim. 2012b. Single-crystal structures of $Li^+$-exchanged zeolite X (FAU, Si/Al = 1.09) from aqueous solution depends on ion-exchange temperatures at 293 and 333 K. Bull. Korean Chem. Soc. 33: 3303-3310. https://doi.org/10.5012/bkcs.2012.33.10.3303
  20. Kim, H.S., S.Y. Choi, and W.T. Lim. 2013a. Complete $Li^+$ exchange into zeolite X (FAU, Si/Al =1.09) from undried methanol solution. J. Porous Mater. 20: 1449-1456. https://doi.org/10.1007/s10934-013-9731-1
  21. Kim, H.S., J.S. Park, J.J. Kim, J.M. Suh, and W.T. Lim. 2013b. $Li^+$-exchanged zeolites X and Y (FAU) from undried formamide solution. Korean J. Soil Sci. Fert. 46: 260-269. https://doi.org/10.7745/KJSSF.2013.46.4.260
  22. Lee, Y.M., G.H. Jeong, Y. Kim, and K. Seff. 2005. Single crystal structure of fully dehydrated, excessively $Cd^{2+}$- exchanged zeolite Y, ${\mid}Cd_{27.5}(Cd_8O_4)_2{\mid}[Si_{121}Al_{71}O_{384}]$-FAU, containing $Cd_8O_4{^8+}$ clusters. Micropor. Mesopor. Mater. 88: 105-111.
  23. Lide, D.R. 1996/1997a. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 12-14.
  24. Lide, D.R. 1996/1997b. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 6-152.
  25. Lim, W.T., S.Y. Choi, J.H. Choi, Y.H. Kim, N.H. Heo, and K. Seff. 2006. Single-crystal structure of fully dehydrated fully $K^+$-exchanged zeolite Y (FAU), $K_{71}Si_{121}Al_{71}O_{384}$. Micropor. Mesopor. Mater. 92: 234-242. https://doi.org/10.1016/j.micromeso.2005.11.052
  26. Lim, W.T., S.M. Seo, L.Z. Wang, G.Q. Lu, N.H. Heo, and K. Seff. 2010. Single-crystal structures of highly $NH_4{^+}$- exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Micropor. Mesopor. Mater. 129: 11-21. https://doi.org/10.1016/j.micromeso.2009.08.028
  27. Loewenstein, W. 1954. The distribution of aluminum in the tetrahedral of silicates and aluminates. Am. Mineral. 39: 92-96.
  28. Olson, D.H. 1995. The crystal structure of dehydrated NaX. Zeolites. 15: 439-443. https://doi.org/10.1016/0144-2449(95)00029-6
  29. Otwinowski, Z., and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  30. Plevert, J., F. Di Renzo, F. Fajula, and G. Chiari. 1997. Structure of dehydrated zeolite Li-LSX by neutron diffraction: Evidence for a low-temperature orthorhombic faujasite. J. Phys. Chem. B. 101: 10340-10346. https://doi.org/10.1021/jp9714330
  31. Ronay, C., and K. Seff. 1985. Crystal structure of lead ($Pb_6$)- A and lead hydroxide hydrate ($Pb_9(OH)_8(H_2O)_3$)-A. Zeolite A ion exchanged with lead(2+) at pH 4.3 and 6.0 and evacuated. J. Phys. Chem. 89: 1965-1970. https://doi.org/10.1021/j100256a030
  32. Ronay, C., and K. Self. 1993. Lead oxide hydroxide clusters in $Pb_9O(OH)_4-A$, zeolite A exchanged with $Pb^{2+}$ at Ph 6.0. Zeolites. 13: 97-101. https://doi.org/10.1016/0144-2449(93)90067-D
  33. Seo, S.M., W.T. Lim, and K. Seff. 2012a. Crystallographic verification that Copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely $Cu^{2+}$-exchanged zeolite Y (FAU, Si/Al = 1.56). J. Phys. Chem. C. 116: 963-974. https://doi.org/10.1021/jp209542x
  34. Seo, S.M., W.T. Lim, and K. Seff. 2012b. Single-crystal structures of fully and partially dehydrated zeolite Y (FAU, Si/Al = 1.56) $Ni^{2+}$ exchanged at a low pH, 4.9. J. Phys. Chem. C. 116: 13985-13996. https://doi.org/10.1021/jp302524h
  35. Sheldrick, G.M. 1997. SHELXL97, Program for the Refinement of Crystal Structures. University of Gottingen, Germany.
  36. Shepelev, Y.F., A.A. Anderson, and Y.I. Smolin. 1990. Crystal structure of a partially lithium-exchanged X zeolite in hydrated ($25^{\circ}C$) and dehydrated ($275^{\circ}C$) states. Zeolites. 10: 61-63. https://doi.org/10.1016/0144-2449(90)90095-9
  37. Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, and J.C. Jansen. 2001. Introduction to Zeolites Science and Practice. Elsevier. p 44.
  38. Weast, R.V. 1989/1990. Handbook of Chemistry and Physics, 70th ed., The chemical Rubber Co.: Cleveland, OH, p. F-187.
  39. Wozniak, A., B. Marler, K. Angermund, and H. Gies. 2008. Water and cation distribution in fully and partially hydrated Li-LSX zeolite. Chem. Mater. 20: 5968-5976. https://doi.org/10.1021/cm703654a
  40. Zhu, J., N. Mosey, T. Woo, and Y. Huang. 2007. Study of the adsorption of toluene in zeolite LiNa-Y by Solid-State NMR spectroscopy. J. Phys. Chem. C. 111: 13427-13436. https://doi.org/10.1021/jp0706275
  41. Zhu, L., and K. Seff. 1999. Reinvestigation of the crystal structure of dehydrated sodium zeolite X. J. Phys. Chem. B. 103: 9512-9518.