DOI QR코드

DOI QR Code

Analysis of Allowable Stresses of Machine Graded Lumber in Korea

국내 기계등급구조재의 허용응력 분석

  • Hong, Jung-Pyo (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Oh, Jung-Kwon (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Joo-Saeng (Department of Forest Products, Korea Forest Research Institute) ;
  • Han, Yeon Jung (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Pang, Sung-Jun (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Chul-Ki (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Jun-Jae (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 홍정표 (서울대학교 농업생명과학연구원) ;
  • 오정권 (서울대학교 농업생명과학연구원) ;
  • 박주생 (국립산림과학원 임산공학부) ;
  • 한연중 (서울대학교 산림과학부) ;
  • 방성준 (서울대학교 산림과학부) ;
  • 김철기 (서울대학교 산림과학부) ;
  • 이전제 (서울대학교 산림과학부)
  • Received : 2015.04.08
  • Accepted : 2015.05.06
  • Published : 2015.07.25

Abstract

365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

KS F 3020-침엽수구조용재 기준에 따라 국산 소나무(Pinus densiflora) $38{\times}140{\times}3600mm$ 구조용 제재목 365개에 대하여 기계등급구분을 실시하고, 휨허용응력을 산출하여 현재 적용되는 KS기준허용응력과 비교 분석하였다. 휨허용응력 계산을 위하여 5% 휨강도 하한값을 75% 신뢰수준의 비모수적 방법, 2-parameter 그리고 3-parameter Weibull 분포를 가정한 모수적 방법, 휨강도-휨탄성계수 직선회귀 방법, 총 4가지 분석방법을 사용하여 결정하였다. 기계등급 E8, E9, E10 만이 비모수적 방법의 통계 처리가 가능한 자료 수를 얻었으며, 휨강도-휨탄성계수 직선회귀 방법은 이론적으로 모든 등급에 대한 5% 하한값 결정이 가능함을 보여주었다. 결정된 등급별 휨허용응력은 기준허용응력에 비하여 모두 낮은 값을 나타내었으며 이것은 과소설계의 위험성이 있는 것으로 현행 기계등급구분체계의 문제점으로 파악되었다. 이러한 문제는 구조설계 신뢰성과 관련하여 반드시 개선되어야 할 것으로, 휨강도-휨탄성계수 조합 등급 도입이 필요할 것으로 생각되었다.

Keywords

References

  1. ASTM. 2004. Standard practice for assigning allowable properties for mechanically graded lumber. D6570-04, West Conshohocken, Pa. USA.
  2. ASTM. 2010. Standard practice for evaluating allowable properties for grades of structural lumber. D 2915-10, West Conshohocken, Pa. USA.
  3. Architectural Institute of Korea (AIK). 2011. Korean Building Code and Commentary. Kimoondang, Seoul, Korea.
  4. Barrett, J.D., Jones, E.D., Lau, W. 1994. Canadian lumber properties. Canadian Wood Council. Ottawa, ON. Canada.
  5. Forest Products Laboratory (FPL). 2010. Wood handbook: wood as an engineering material. General Technical Report. FPL-GTR-190, USDA, Forest Service.
  6. Hong, J.P., Lee, J.J., Park, M.J., Yeo, H.M., Pang, S.J., Kim, C.K., Oh, J.K. 2015. Establishment of Grades and Design Strengths for Machine Graded Lumber in Korea. Journal of Korean Wood Science & Technology (in progress).
  7. Hwang, K.H., Park, J.S., Park, M.J. 2011. Evaluating structural performance of graded domestic softwood lumber. Research report 11-10, Korea Forest Research Institute, Korea Forest Service, Seoul, Korea.
  8. Korea Forest Service (KFS). 1995. Notification 1995-27; Standard for sizes of Korean softwood structural lumber. Korea.
  9. KS F 2150:2004. 2004. Method of static bending test for full sized structural lumber. Korean Standards Association. Seoul, Korea.
  10. KS F 2152:2004. 2004. Establish allowable properties of softwood structural lumber. Korean Standards Association. Seoul, Korea.
  11. KS F 3020:2013. 2013. Softwood structural lumber. Korean Standards Association. Seoul, Korea.
  12. KS F 3021:2013. 2013. Structural glued laminated timber. Korean Standards Association. Seoul, Korea.
  13. Lee, J.J., Kim, G.C., Kim, G.M., Oh, J.K. 2003. Distribution characteristics of bending properties for visual graded lumber of Japanese larch. Journal of Korean Wood Science & Technology 31(5): 72-79.
  14. National Lumber Grades Authority (NLGA). 2007. Standard Grading Rules for Canadian Lumber. NLGA, New Westminster, BC. Canada.
  15. Oh, J.K., Kim, G.C., Lee, J.J. 2000. Knot distribution and machine grades of Japanese larch lumber. Proceedings of the Korean society of wood and technology 2000(1): 41-47.
  16. Pang, S.J., Oh, J.K., Park, C.Y., Park, J.S., Park, M.J., Lee, J.J. 2011a. Characteristic evaluation of bending strength distributions on revised Korean visual grading rule. Journal of Korean Wood Science & Technology 39(1): 1-7. https://doi.org/10.5658/WOOD.2011.39.1.1
  17. Pang, S.J., Park, J.S., Hwang, K.H., Jeong, G.Y., Park, M.J., Lee, J.J. 2011b. Bending strength of Korean softwood species for 120 ${\time}$ 180 mm structural members. Journal of Korean Wood Science & Technology 39(5): 444-450. https://doi.org/10.5658/WOOD.2011.39.5.444
  18. Pang, S.J., Lee, J.J., Oh, J.K. 2013a. Effect of test zone selection for evaluating bending strength of lumber. Journal of Korean Wood Science & Technology 41(5): 392-398. https://doi.org/10.5658/WOOD.2013.41.5.392
  19. Pang, S.J., Lee, J.J., Oh, J.K. 2013b. Evaluation of allowable bending stress of dimension lumber: confidence levels and size-adjustment. Journal of Korean Wood Science & Technology 41(5): 432-439. https://doi.org/10.5658/WOOD.2013.41.5.432
  20. Western Wood Products Association (WWPA). 2004. Western Lumber Grading Rules. WWPA, Portland, OR. USA.