DOI QR코드

DOI QR Code

PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구

Study on free and bond glycerines in Biodiesel from PKO(Palm Kernel Oil) and coconut oil

  • 이돈민 (한국석유관리원 석유기술연구소) ;
  • 박천규 (한국석유관리원 석유기술연구소) ;
  • 하종한 (한국석유관리원 석유기술연구소) ;
  • 이봉희 (충북대학교 공과대학 화학공학과)
  • Lee, Don-Min (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Park, Chun-Kyu (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Ha, Jong-Han (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Bong-Hee (Dept. of Chemical Engineering, Chungbuk National University)
  • 투고 : 2015.06.05
  • 심사 : 2015.06.23
  • 발행 : 2015.06.30

초록

오늘날 지구온난화를 줄이기 위한 노력으로 온실가스 저감 기술 개발에 대한 노력이 정부차원에서 이루어지고 있으며 그 일환으로 국내에서는 2006년부터 자동차용 경유에 바이오디젤이 혼입되고 있다. 비록 일부 품질 기준상의 개선사항이 남아 있고 대부분의 원료를 수입에 의존하고 있다는 점에서 제한요소가 있음에도 2013년 기준 년간 400kton를 생산하고 있으며 향후 신재생에너지 연료 혼합의무화 제도(RFS)가 시행되면 그 생산양은 더욱 증가할 것으로 예상되는바 원료 다변화를 통한 원료 불균형 해소와 이에 따른 적절한 연구 개발이 필요하다. 본 연구에서는 신규 바이오디젤 원료로 검토되고 있는 라우릭산 메틸에스터($C_{12:0}$ FAME) 중심의 팜핵유(PKO, Palm Kernel Oil)와 코코넛유 유래 바이오디젤을 대상으로 국내 품질기준 중 차량 연소계통과 저온성능에 문제를 일으킬 수 있는 글리세린 함량 분석과 관련하여 기존 시험방법(KS M 2412)의 적용 가능성을 조사하였다. 이를 바탕으로 기존 분석조건에서 발생되는 카프릭산 메틸에스터($C_{10:0}$ FAME)와의 피크겹침, 총글리세린 도출관련 계산평형상수 등에 대한 개선 사항을 도출하고 보다 다양한 원료를 이용한 바이오디젤 내 글리세린 분석 가능한 시험방법 개발 가능성을 검토하였다.

To reduce the effects of greenhouse gas (GHG) emissions, the government has announced the special platform of technologies as parts of an effort to minimize global climate change, and the government distributed biodiesel since 2006 as the further efforts. Although there are some debates about some quality specifications and unbalanced of source (44% from palm oil), more than 400kton/year of biodiesel was produced in 2013. Moreover the amounts will be increased when the RFS is activated. To solve the unbalanced situation and to achieve the diversity of feeds, it is essential that many researches should be considered. Especially, free and bond glycerines are one of the important properties seriously affected to the combustion system in vehicle & cold properties. Previous method (KS M 2412) couldn't cover the biodiesel derived from lauric oil($C_{12:0}$) such as PKO (Palm Kernel Oil), Coconut oil because those compositions are lighter than other conventional biodiesel sources. In this study, we review the existed method and figure out the factors should improve to analysis the glycerine from PKO and Coconut oil biodiesel. Modifying the analysis conditions to enhance the resolution and change the internal standards to avoid the overlapped- peaks between Capric acid ME ($C_{10:0}$) and standard#1(1,2,4-butantriol). From this revised method, we could solve the restrictions of previous methods. And check the possibility of new method to analyze the glycerine in biodiesel regardless of sources.

키워드

참고문헌

  1. C. S. Jung, Y. J. Lee, and J. I. Dong, Life Time Estimation of Biodiesel and Biodiesel Blend Fuel from the Oxidation Stability Analysis, J. of The korean society for new and renewable energy, 3, 579(2007).
  2. D. M. Lee, K. I. Min, E. S. Yim, J. H. Ha, C. G. Lee, B. H. Lee. Study of FAME components and total contents on Micro-algal Biodiesel derived frol Dunaliella tertiolecta, J. of Korean Oil Chemists' Soc., 31, 320 (2014). https://doi.org/10.12925/jkocs.2014.31.2.320
  3. IEA. 2009, "World Energy Outlook", International Energy Agency. OECD/Paris.
  4. Hart's Global Biofuel Center, 2010, "Global Biofuels Outlook 2010-2020", Houston, USA.
  5. Y. J. Hyun and H. S. Kim, Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process, J. of Korean Oil Chemists' Soc., 19, 327 (2002).
  6. R. O. Dunn, Antioxidants for Improving Storage Stability of Biodiesel, Biofuels Bioproducts and Biorefining, 2, 304(2008). https://doi.org/10.1002/bbb.83
  7. S. P. Singh and D. Singh, Biodiesel Production through the Use of Different Sources and Characterization of Oils and their Esters as the Substitute of Diesel, a Review, Renew. Sustain. Energy Rev., 14, 200 (2010). https://doi.org/10.1016/j.rser.2009.07.017
  8. J. K. Kim, C. H. Jeon, E. S. Yim and C.S. Jung, A Study on the Fuel Characteristics of Hydrotreated Biodiesel (HBD) for Alternative Diesel Fuel, J. of Korean Oil Chemists' Soc., 28, 508 (2011).
  9. P. V. Bhale, N. V. Deshpande and S. B. Thombre, Improving the Low Temperature Properties of Biodiesel Fuel, Renew. Energy, 34, 794 (2009). https://doi.org/10.1016/j.renene.2008.04.037
  10. J. K. Kim, E. S. Yim, C. H. Jeon, C. S. Jung and B. H. Han, Cold Performance of Various Biodiesel Fuel Blends at Low Temperature, Int. J. Automotive Technology, 13, 293 (2012). https://doi.org/10.1007/s12239-012-0027-2
  11. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilefd, A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16: 2070-2093(2012). https://doi.org/10.1016/j.rser.2012.01.003
  12. A. Kirrolia, N. R. Bishnoi, and R. Singh, Microalgae as a boon for sustainable energy production and its future research & development aspects. Renew. Sustain. Energy Rev. 20: 642-656(2013). https://doi.org/10.1016/j.rser.2012.12.003
  13. J. K. Kim, J. Y. Park, Fuel properties of various biodiesel derived vegetable oil. J. of Korean Oil Chemists' Soc. 30: 45-48 (2013).
  14. R. O. Dunn, Effects of minor constituents on cold flow properties and performance of biodiesel. Prog. Energ. Combust. Sci. 35: 481-489(2009). https://doi.org/10.1016/j.pecs.2009.07.002
  15. M. Oguma, N. Chollacoop, EAS-ERIA, Biodiesel fuel trade handbook 2010, 27-62(2010).
  16. C. Y. Lin and C. C. Chiu, Effects of Oxidation during Long-term Storage on the Fuel Properties of Palm Oil-based Biodiesel, Energy Fuels, 23, 3285 (2009). https://doi.org/10.1021/ef900105t
  17. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki and S. Mekhilef, A Comprehensive Review on Biodiesel as an Alternative Energy Resource and its Characteristics, Renew. Sustain. Energy Rev., 16, 2070 (2012). https://doi.org/10.1016/j.rser.2012.01.003
  18. C. Carraretto, A. Macor, A. Mirandola, A. Stoppato and S. Tonon, Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations, Energy Convers. Manage., 29, 2195 (2004).
  19. Y. J. Hyun, Conversion of Mixed Fat into Biodiesel in Plug Flow Reactor Using Alkali and Mixed Catalysts, J. of Korean Oil Chemists' Soc., 27, 123 (2010).
  20. J. P. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim and J. S. Lee, Blending Effects of Biodiesels on Oxidation Stability and Low Temperature Flow Properties, Bioresource Technology, 99, 1196 (2008). https://doi.org/10.1016/j.biortech.2007.02.017
  21. C. Y. Lin and C. C. Chiu, Effects of Oxidation during Long-term Storage on the Fuel Properties of Palm Oil-based Biodiesel, Energy Fuels, 23, 3285 (2009). https://doi.org/10.1021/ef900105t
  22. I. M. Atadashi, M. K. Aroua and A. A. Abdul, High Quality Biodiesel and its Diesel Engine Application, a Review, Renew. Sustain. Energy Rev., 14, 1999(2010). https://doi.org/10.1016/j.rser.2010.03.020
  23. Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ. Ultrasonicassisted biodiesel production from palm oil: a response surface methodology approach. Fuel Process Technol. 91, 441-448 (2010). https://doi.org/10.1016/j.fuproc.2009.12.002
  24. Barakos N, Pasias S, Papayannakos N. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresour Technol. 99, 5037-5042 (2008). https://doi.org/10.1016/j.biortech.2007.09.008