DOI QR코드

DOI QR Code

Effect of activation and preactivation on the mechanical behavior and neutral position of stainless steel and beta-titanium T-loops

  • de Castro, Saul Matos (Department of Orthodontics, Faculty of Dental Medicine, University of Porto) ;
  • Moreira, Rui (Department of Mechanical Engineering, University of Aveiro) ;
  • Braga, Ana Cristina (Department of Production and Systems Engineering, School of Engineering, University of Minho) ;
  • Ferreira, Afonso Pinhao (Department of Orthodontics, Faculty of Dental Medicine, University of Porto) ;
  • Pollmann, Maria Cristina (Department of Orthodontics, Faculty of Dental Medicine, University of Porto)
  • Received : 2014.06.23
  • Accepted : 2015.02.09
  • Published : 2015.07.25

Abstract

Objective: To quantify, for each activation, the effect of preactivations of differing distribution and intensity on the neutral position of T-loops (7-mm height), specifically the horizontal force, moment to force (M/F) ratio, and load to deflection ratio. Methods: A total 100 loops measuring $0.017{\times}0.025$ inches in cross-section were divided into two groups (n = 50 each) according to composition, either stainless steel or beta-titanium. The two groups were further divided into five subgroups, 10 loops each, corresponding to the five preactivations tested: preactivations with occlusal distribution ($0^{\circ}$, $20^{\circ}$, and $40^{\circ}$), gingival distribution ($20^{\circ}$), and occlusal-gingival distribution ($40^{\circ}$). The loops were subjected to a total activation of 6-mm with 0.5-mm iterations. Statistical analysis was performed using comprised ANOVA and Bonferoni multiple comparison tests, with a significance level of 5%. Results: The location and intensity of preactivation influenced the force intensity. For the M/F ratio, the highest value achieved without preactivation was lower than the height of the loop. Without preactivation, the M/F ratio increased with activation, while the opposite effect was observed with preactivation. The increase in the M/F ratio was greater when the preactivation distribution was partially or fully gingival. Conclusions: Depending on the preactivation distribution, displacement of uprights is higher or lower than the activation, which is a factor to consider in clinical practice.

Keywords

References

  1. Weinstein S, Haack DC. Theoretical mechanics and practical orthodontics. Angle Orthod 1959;29:177-81.
  2. Vaden JL, Dale JG, Klontz HA. Aparato arco de canto de Tweed-Merrifield: filosofia, diagnostico y tratamiento. In: Restrepo GAU, editor. Ortodoncia principios generales y tecnicas. 3rd ed. Buenos Aires: Editorial Medica Panamericana S.A; 2003. p. 625-82.
  3. Burstone CJ, Koenig HA. Optimizing anterior and canine retraction. Am J Orthod 1976;70:1-19. https://doi.org/10.1016/0002-9416(76)90257-8
  4. Burstone CJ. The mechanics of the segmented arch techniques. Angle Orthod 1966;36:99-120.
  5. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307. https://doi.org/10.1016/0002-9416(84)90187-8
  6. Siatkowski RE. Force system analysis of V-bend sliding mechanics. J Clin Orthod 1994;28:539-46.
  7. Braun S, Garcia JL. The Gable bend revisited. Am J Orthod Dentofacial Orthop 2002;122:523-7. https://doi.org/10.1067/mod.2002.126727
  8. Siatkowski RE. Continuous arch wire closing loop design, optimization, and verification. Part II. Am J Orthod Dentofacial Orthop 1997;112:487-95. https://doi.org/10.1016/S0889-5406(97)70075-1
  9. Techalertpaisarn P, Versluis A. Mechanical properties of Opus closing loops, L-loops, and T-loops investigated with finite element analysis. Am J Orthod Dentofacial Orthop 2013;143:675-83. https://doi.org/10.1016/j.ajodo.2013.01.011
  10. Chen J, Markham DL, Katona TR. Effects of T-loop geometry on its forces and moments. Angle Orthod 2000;70:48-51.
  11. Kuhlberg AJ, Burstone CJ. T-loop position and anchorage control. Am J Orthod Dentofacial Orthop 1997;112:12-8. https://doi.org/10.1016/S0889-5406(97)70268-3
  12. Maia LG, de Moraes Maia ML, da Costa Monini A, Vianna AP, Gandini LG Jr. Photoelastic analysis of forces generated by T-loop springs made with stainless steel or titanium-molybdenum alloy. Am J Orthod Dentofacial Orthop 2011;140:e123-8. https://doi.org/10.1016/j.ajodo.2011.03.020
  13. Manhartsberger C, Morton JY, Burstone CJ. Space closure in adult patients using the segmented arch technique. Angle Orthod 1989;59:205-10.
  14. Marcotte MR. Mecanica em Ortodontia. In: Marcotte MR, editor. Biomecanica em ortodontia. 2nd ed. Sao Paulo: Livraria Santos Editora; 2003. p. 1-21.
  15. Shimizu RH, Sakima T, Pinto AS, Shimizu IA. Desempenho biomecanico da alca "T", construida com fio de aco inoxidavel, durante o fechamento de espacos no tratamento ortodontico. R Dental Press Ortodon Ortop Facial 2002;7:49-61.
  16. Souza RS, Pinto AS, Shimizu RH, Sakima MT, Gandini LG. Avaliacao do sistema de forcas gerado pela alca T de retracao pre-ativada segundo o padrao UNESP-Araraquara. R Dental Press Ortodon Ortop Facial 2003;8:113-22.
  17. Siatkowski RE. Continuous arch wire closing loop design, optimization, and verification. Part I. Am J Orthod Dentofacial Orthop 1997;112:393-402. https://doi.org/10.1016/S0889-5406(97)70047-7
  18. Thiesen G, Shimizu RH, do Valle CV, do Valle-Corotti KM, Pereira JR, Conti PC. Determination of the force systems produced by different configurations of tear drop orthodontic loops. Dental Press J Orthod 2013;18:19.e1-18. https://doi.org/10.1590/S2176-94512013000200007
  19. Braun S, Sjursen RC Jr, Legan HL. On the management of extraction sites. Am J Orthod Dentofacial Orthop 1997;112:645-55. https://doi.org/10.1016/S0889-5406(97)70230-0
  20. Halazonetis DJ. Understanding orthodontic loop preactivation. Am J Orthod Dentofacial Orthop 1998;113:237-41. https://doi.org/10.1016/S0889-5406(98)70143-X
  21. Viecilli RF. Self-corrective T-loop design for differential space closure. Am J Orthod Dentofacial Orthop 2006;129:48-53. https://doi.org/10.1016/j.ajodo.2004.05.025
  22. Rose D, Quick A, Swain M, Herbison P. Moment-toforce characteristics of preactivated nickel-titanium and titanium-molybdenum alloy symmetrical T-loops. Am J Orthod Dentofacial Orthop 2009;135: 757-63. https://doi.org/10.1016/j.ajodo.2007.06.015
  23. Caldas SG, Martins RP, Galvao MR, Vieira CI, Martins LP. Force system evaluation of symmetrical betatitanium T-loop springs preactivated by curvature and concentrated bends. Am J Orthod Dentofacial Orthop 2011;140:e53-8. https://doi.org/10.1016/j.ajodo.2010.11.022
  24. Ferreira Mdo A, de Oliveira FT, Ignacio SA, Borges PC. Experimental force definition system for a new orthodontic retraction spring. Angle Orthod 2005; 75:368-77.
  25. Burstone CJ, Koenig HA. Force systems from an ideal arch. Am J Orthod 1974;65:270-89. https://doi.org/10.1016/S0002-9416(74)90332-7
  26. Ingram SB Jr, Gipe DP, Smith RJ. Comparative range of orthodontic wires. Am J Orthod Dentofacial Orthop 1986;90:296-307. https://doi.org/10.1016/0889-5406(86)90086-7
  27. Odegaard J, Meling T, Meling E. The effects of loops on the torsional stiffnesses of rectangular wires: an in vitro study. Am J Orthod Dentofacial Orthop 1996;109:496-505. https://doi.org/10.1016/S0889-5406(96)70134-8