DOI QR코드

DOI QR Code

Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis

  • Ghimire, Gopal Prasad (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University) ;
  • Koirala, Niranjan (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University)
  • Received : 2014.08.25
  • Accepted : 2014.11.18
  • Published : 2015.05.28

Abstract

Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalene-hopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/mass spectrometry.

Keywords

References

  1. Anding C, Rohmer M, Qurisson G. 1976. Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J. Am. Chem. Soc. 98: 1274-1275. https://doi.org/10.1021/ja00421a045
  2. Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G. 1983. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω- dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 110: 320-324. https://doi.org/10.1016/0006-291X(83)91298-6
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
  4. Corey EJ, Russey WE, Ortiz de Montellano PR. 1966. 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J. Am. Chem. Soc. 88: 4750-4751. https://doi.org/10.1021/ja00972a056
  5. Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identifica tion of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol. Cells 26: 362-367.
  6. Ghimire GP, Oh TJ, Lee HC, Kim BG, Sohng JK. 2008. Cloning and functional characterization of germacradienol synthase (spterp13) from Streptomyces peucetius ATCC 27952. J. Microbiol. Biotechnol. 18: 1216-1220.
  7. Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569. https://doi.org/10.1007/s10529-008-9903-2
  8. Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293. https://doi.org/10.1128/AEM.01402-09
  9. Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0
  10. Jones GH, Hopwood DA. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259: 14158-14164.
  11. Kannenberg EL, Perzl M, Muller P, Hartner T, Poralla K. 1996. Hopanoid lipids in Bradyrhizobium and other pla nt-a ssocia ted bacteria and cloning of the Bradyrhizobium japonicum squalene-hopene cyclase. Plant Soil 186: 107-112. https://doi.org/10.1007/BF00035063
  12. Kannenberg EL, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86: 168-176. https://doi.org/10.1007/s001140050592
  13. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.
  14. Meyer O, Grosdemanage-Billard C, Tritsch D, Rohmer M. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372. https://doi.org/10.1039/b312193c
  15. Palmu K, Ishida K, Mantsala P, Hertweck C, Mesta-Ketele M. 2007. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chembiochem 8: 1577-1584. https://doi.org/10.1002/cbic.200700140
  16. Parker LL, Betts PW, Hall BG. 1988. Activa tion of a cryptic gene by excision of a DNA fragment. J. Bacteriol. 170: 218-222. https://doi.org/10.1128/jb.170.1.218-222.1988
  17. Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from Bacillus acidocaldarius has a cholesterol like function in membranes. FEBS Lett. 113: 107-110. https://doi.org/10.1016/0014-5793(80)80506-0
  18. Poralla K, Hartner T, Kannenberg E. 1984. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol. Lett. 23: 253-256. https://doi.org/10.1111/j.1574-6968.1984.tb01073.x
  19. Poralla K, Muth G, Harter T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 189: 93-95. https://doi.org/10.1111/j.1574-6968.2000.tb09212.x
  20. Qurisson G, Albrecht P, Rohmer M. 1979. The hopanoids: paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709-729. https://doi.org/10.1351/pac197951040709
  21. Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395. https://doi.org/10.1038/nchembio.2007.8
  22. Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopaniods in prokaryotes. J. Gen. Microbiol. 130: 1137-1150.
  23. Sahm H, Rhomer M, Bringer-Meyer S, Sprenger GA, Welle R. 1993. Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35: 247-273. https://doi.org/10.1016/S0065-2911(08)60100-9
  24. Van Tamelen EE, Willett JD, Clayton RB, Lord KE. 1966. Enzymatic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J. Am. Chem. Soc. 88: 4752-4754. https://doi.org/10.1021/ja00972a058
  25. Withers ST, Keasling JD. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73: 980-990. https://doi.org/10.1007/s00253-006-0593-1

Cited by

  1. Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes vol.1, pp.2, 2015, https://doi.org/10.1021/acscentsci.5b00115
  2. Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P vol.8, pp.None, 2015, https://doi.org/10.3389/fmicb.2017.00194
  3. Complete Genome Sequence of Streptomyces sp. Sge12, Which Produces Antibacterial and Fungicidal Activities vol.5, pp.21, 2015, https://doi.org/10.1128/genomea.00415-17
  4. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
  5. Draft Genome Sequence of Streptomyces sp. Strain DH-12, a Soilborne Isolate from the Thar Desert with Broad-Spectrum Antibacterial Activity vol.6, pp.9, 2015, https://doi.org/10.1128/genomea.00108-18
  6. Draft Genome Sequence of the Pristinamycin-Producing Strain Streptomyces sp. SW4, Isolated from Soil in Nusa Kambangan, Indonesia vol.7, pp.7, 2015, https://doi.org/10.1128/mra.00912-18
  7. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction vol.5, pp.2, 2015, https://doi.org/10.1016/j.synbio.2020.03.001
  8. Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus vol.11, pp.4, 2015, https://doi.org/10.3390/metabo11040239
  9. Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production vol.11, pp.8, 2021, https://doi.org/10.3390/biom11081155