Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08058

Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis  

Ghimire, Gopal Prasad (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University)
Koirala, Niranjan (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University)
Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 658-661 More about this Journal
Abstract
Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalene-hopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/mass spectrometry.
Keywords
Cryptic genes; genome; heterologous expression; hopanoid biosynthesis; S. peucetius;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Van Tamelen EE, Willett JD, Clayton RB, Lord KE. 1966. Enzymatic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J. Am. Chem. Soc. 88: 4752-4754.   DOI
2 Withers ST, Keasling JD. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73: 980-990.   DOI   ScienceOn
3 Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from Bacillus acidocaldarius has a cholesterol like function in membranes. FEBS Lett. 113: 107-110.   DOI   ScienceOn
4 Meyer O, Grosdemanage-Billard C, Tritsch D, Rohmer M. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372.   DOI   ScienceOn
5 Palmu K, Ishida K, Mantsala P, Hertweck C, Mesta-Ketele M. 2007. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chembiochem 8: 1577-1584.   DOI   ScienceOn
6 Parker LL, Betts PW, Hall BG. 1988. Activa tion of a cryptic gene by excision of a DNA fragment. J. Bacteriol. 170: 218-222.   DOI
7 Poralla K, Hartner T, Kannenberg E. 1984. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol. Lett. 23: 253-256.   DOI
8 Poralla K, Muth G, Harter T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 189: 93-95.   DOI
9 Qurisson G, Albrecht P, Rohmer M. 1979. The hopanoids: paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709-729.   DOI
10 Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395.   DOI   ScienceOn
11 Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopaniods in prokaryotes. J. Gen. Microbiol. 130: 1137-1150.
12 Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293.   DOI   ScienceOn
13 Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identifica tion of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol. Cells 26: 362-367.
14 Ghimire GP, Oh TJ, Lee HC, Kim BG, Sohng JK. 2008. Cloning and functional characterization of germacradienol synthase (spterp13) from Streptomyces peucetius ATCC 27952. J. Microbiol. Biotechnol. 18: 1216-1220.
15 Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569.   DOI
16 Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.   DOI   ScienceOn
17 Jones GH, Hopwood DA. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259: 14158-14164.
18 Kannenberg EL, Perzl M, Muller P, Hartner T, Poralla K. 1996. Hopanoid lipids in Bradyrhizobium and other pla nt-a ssocia ted bacteria and cloning of the Bradyrhizobium japonicum squalene-hopene cyclase. Plant Soil 186: 107-112.   DOI
19 Kannenberg EL, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86: 168-176.   DOI
20 Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.
21 Anding C, Rohmer M, Qurisson G. 1976. Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J. Am. Chem. Soc. 98: 1274-1275.   DOI
22 Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G. 1983. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω- dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 110: 320-324.   DOI   ScienceOn
23 Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI
24 Corey EJ, Russey WE, Ortiz de Montellano PR. 1966. 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J. Am. Chem. Soc. 88: 4750-4751.   DOI
25 Sahm H, Rhomer M, Bringer-Meyer S, Sprenger GA, Welle R. 1993. Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35: 247-273.   DOI