References
- Anding C, Rohmer M, Qurisson G. 1976. Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J. Am. Chem. Soc. 98: 1274-1275. https://doi.org/10.1021/ja00421a045
- Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G. 1983. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω- dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 110: 320-324. https://doi.org/10.1016/0006-291X(83)91298-6
- Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
- Corey EJ, Russey WE, Ortiz de Montellano PR. 1966. 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J. Am. Chem. Soc. 88: 4750-4751. https://doi.org/10.1021/ja00972a056
- Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identifica tion of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol. Cells 26: 362-367.
- Ghimire GP, Oh TJ, Lee HC, Kim BG, Sohng JK. 2008. Cloning and functional characterization of germacradienol synthase (spterp13) from Streptomyces peucetius ATCC 27952. J. Microbiol. Biotechnol. 18: 1216-1220.
- Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569. https://doi.org/10.1007/s10529-008-9903-2
- Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293. https://doi.org/10.1128/AEM.01402-09
- Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0
- Jones GH, Hopwood DA. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259: 14158-14164.
- Kannenberg EL, Perzl M, Muller P, Hartner T, Poralla K. 1996. Hopanoid lipids in Bradyrhizobium and other pla nt-a ssocia ted bacteria and cloning of the Bradyrhizobium japonicum squalene-hopene cyclase. Plant Soil 186: 107-112. https://doi.org/10.1007/BF00035063
- Kannenberg EL, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86: 168-176. https://doi.org/10.1007/s001140050592
- Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.
- Meyer O, Grosdemanage-Billard C, Tritsch D, Rohmer M. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372. https://doi.org/10.1039/b312193c
- Palmu K, Ishida K, Mantsala P, Hertweck C, Mesta-Ketele M. 2007. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chembiochem 8: 1577-1584. https://doi.org/10.1002/cbic.200700140
- Parker LL, Betts PW, Hall BG. 1988. Activa tion of a cryptic gene by excision of a DNA fragment. J. Bacteriol. 170: 218-222. https://doi.org/10.1128/jb.170.1.218-222.1988
- Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from Bacillus acidocaldarius has a cholesterol like function in membranes. FEBS Lett. 113: 107-110. https://doi.org/10.1016/0014-5793(80)80506-0
- Poralla K, Hartner T, Kannenberg E. 1984. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol. Lett. 23: 253-256. https://doi.org/10.1111/j.1574-6968.1984.tb01073.x
- Poralla K, Muth G, Harter T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 189: 93-95. https://doi.org/10.1111/j.1574-6968.2000.tb09212.x
- Qurisson G, Albrecht P, Rohmer M. 1979. The hopanoids: paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709-729. https://doi.org/10.1351/pac197951040709
- Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395. https://doi.org/10.1038/nchembio.2007.8
- Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopaniods in prokaryotes. J. Gen. Microbiol. 130: 1137-1150.
- Sahm H, Rhomer M, Bringer-Meyer S, Sprenger GA, Welle R. 1993. Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35: 247-273. https://doi.org/10.1016/S0065-2911(08)60100-9
- Van Tamelen EE, Willett JD, Clayton RB, Lord KE. 1966. Enzymatic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J. Am. Chem. Soc. 88: 4752-4754. https://doi.org/10.1021/ja00972a058
- Withers ST, Keasling JD. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73: 980-990. https://doi.org/10.1007/s00253-006-0593-1
Cited by
- Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes vol.1, pp.2, 2015, https://doi.org/10.1021/acscentsci.5b00115
- Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P vol.8, pp.None, 2015, https://doi.org/10.3389/fmicb.2017.00194
- Complete Genome Sequence of Streptomyces sp. Sge12, Which Produces Antibacterial and Fungicidal Activities vol.5, pp.21, 2015, https://doi.org/10.1128/genomea.00415-17
- Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
- Draft Genome Sequence of Streptomyces sp. Strain DH-12, a Soilborne Isolate from the Thar Desert with Broad-Spectrum Antibacterial Activity vol.6, pp.9, 2015, https://doi.org/10.1128/genomea.00108-18
- Draft Genome Sequence of the Pristinamycin-Producing Strain Streptomyces sp. SW4, Isolated from Soil in Nusa Kambangan, Indonesia vol.7, pp.7, 2015, https://doi.org/10.1128/mra.00912-18
- Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction vol.5, pp.2, 2015, https://doi.org/10.1016/j.synbio.2020.03.001
- Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus vol.11, pp.4, 2015, https://doi.org/10.3390/metabo11040239
- Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production vol.11, pp.8, 2021, https://doi.org/10.3390/biom11081155