DOI QR코드

DOI QR Code

Characterization of Synthesized Strontianite: Effects of Ionic Strength, Temperature, and Aging Time on Crystal Morphology and Size

온도, 이온세기 및 결정성장시간에 따른 합성 스트론티아나이트(SrCO3) 특성 연구

  • Lee, Seon Yong (Department of Earth & Environmental Sciences, Korea University) ;
  • Lee, Choong Hyun (Department of Earth & Environmental Sciences, Korea University) ;
  • Hur, Hyuck (Department of Earth & Environmental Sciences, Korea University) ;
  • Seo, Jieun (Department of Earth & Environmental Sciences, Korea University) ;
  • Lee, Young Jae (Department of Earth & Environmental Sciences, Korea University)
  • 이선용 (고려대학교 지구환경과학과) ;
  • 이충현 (고려대학교 지구환경과학과) ;
  • 허혁 (고려대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2015.06.13
  • Accepted : 2015.06.27
  • Published : 2015.06.30

Abstract

Physical properties of strontianite ($SrCO_3$) synthesized under variable conditions such as different ionic strength, temperature, and aging time were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). All synthesized samples show a single phase of strontianite. Crystallinity of the synthesized strontianite increases with increasing temperature and ionic strength with $NaNO_3$. Crystal sizes of the samples increase dramatically, and their morphology changes from rod or dendritic to prismatic shape as ionic strength and temperature of the solution increase. In addition, crystal sizes increase, and their morphology changes from rod or prismatic crystals to spheroidal aggregates with increasing aging time. These results suggest that changes in conditions of the synthesis for strontianite play an important role in controlling the crystallinity and morphology of results provide crucial information on the prediction for the physical properties of strontianite under different conditions during the formation of strontianite crystals.

본 연구에서는 X-선 회절(XRD) 분석과 주사전자현미(SEM) 분석을 통해 이온세기, 온도, 그리고 결정성장시간과 같은 이화학적 조건들이 합성된 스트론티아나이트($SrCO_3$)의 물리적 특성에 미치는 영향을 밝혔다. XRD 분석결과, 모든 합성 시료들은 스트론티아나이트의 단일 광물인 것으로 나타났다. 배경전해질이온 $NaNO_3$를 사용한 반응용액의 이온세기와 합성온도가 증가할 때, 합성된 스트론티아나이트의 결정도는 증가하는 것으로 나타났다. SEM을 이용하여 합성된 스트론티아나이트 결정의 크기와 형상을 규명한 결과, 결정크기는 이온세기와 온도가 증가할 때 증가하며, 결정형상은 막대 또는 수지상에서 점차 주상으로 변화되는 것이 관찰되었다. 결정성장시간에 대한 영향은 성장시간이 길어질수록 결정크기가 증가하고 막대 또는 주상 단일결정들의 집합체인 구형 결정형상이 관찰되었다. 이러한 결과들은 합성 시 스트론티아나이트의 결정도 및 결정형상이 결정 생성당시의 이화학적 조건에 크게 영향 받고 있음을 시사한다. 따라서 본 연구 결과는 다양한 조건에서 생성되는 스트론티아나이트 결정들의 물리적 특성들을 예측하는데 매우 중요한 역할을 할 것으로 판단된다.

Keywords

References

  1. Bastow, T.J. (2002) Electric field gradients at the M-site in $MCO_3$: M= Mg, Ca, Sr and Ba. Chemical Physics Letters, 354, 156-159. https://doi.org/10.1016/S0009-2614(02)00135-5
  2. Choi, E.J. and Huh, Y.D. (2009) Preparation of elongated hexagonal pyramids and hexagonal prisms of $SrCO_3$ using hydrothermal reactions. Bulletin of the Korean Chemical Society, 30, 2132-2134. https://doi.org/10.5012/bkcs.2009.30.9.2132
  3. Griffiths, J. (1985) Celestite: New production and processing developments. Industrial Minerals, 218, 21.
  4. Guo, G.S., Gu, F.B., Wang, Z.H., and Guo, H.Y. (2005) Low-temperature growth of single-crystal SrCO3 nanoneedles. Chinese Chemical Letters, 16, 1101-1104.
  5. Iwai, M. and Toguri, J.M. (1989) The leaching of celestite in sodium carbonate solution. Hydrometallurgy, 22, 87-100. https://doi.org/10.1016/0304-386X(89)90043-1
  6. Lewis, G.N. and Randall, M. (1961) Thermodynamics, (2nd Ed.), McGraw-Hill, New york, 723.
  7. Lower, S.K., Maurice, P.A., Traina, S.J., and Carlson, E.H. (1998). Aqueous Pb sorption by hydroxylapatite: Applications of atomic force microscopy to dissolution, nucleation, and growth studies. American Mineralogist, 83, 147-158. https://doi.org/10.2138/am-1998-1-215
  8. Mann, S. (2000) The chemistry of form. Angewandte Chemie International Edition, 39, 3392-3406.
  9. Ming-Xuan, Z., Ji-Chuan, H., Yong-Sheng, Y., Cai-Ping, C., and Yong-Lin, L. (2008) Morphology control of $SrCO_3$ crystals using complexons as modifiers in the ethanol-water mixtures. Chinese Journal of Structural Chemistry, 27, 1223-1229.
  10. Nielsen, A.E. (1964) Kinetics of precipitation. Oxford: Pergamon Press, New York, 153p.
  11. Song, H.-C., Park, S.-H., and Huh, Y.-D. (2007) Fabrication of hierarchical CuO microspheres. Bulletin of the Korean Chemical Society, 28, 477-480. https://doi.org/10.5012/bkcs.2007.28.3.477
  12. Sreedhar, B., Satyavani, C., Devi, D.K., Rambabu, C., Rao, B., and Babu, M.S. (2011) Bioinspired synthesis of morphologically controlled $SrCO_3$ superstructures by natural gum acacia. Crystal Research and Technology, 46, 485-492. https://doi.org/10.1002/crat.201100038
  13. Sreedhar, B., Vani, C.S., Devi, D.K., Sreeram, V., and Rao, M.B. (2012) Nucleation controlled in the aggregative growth of strontium carbonate microcrystals. American Journal of Materials Science, 2, 142-146. https://doi.org/10.5923/j.materials.20120205.02
  14. Sreedhar, B., Sulochana, M., Vani, C.S., Devi, D.K., and Naidu, N.S. (2014) Shape evolution of strontium carbonate architectures using natural gums as crystal growth modifiers. European Chemical Bulletin, 3, 234-239.
  15. Stumm, W. and Morgan, J.J. (1996) Aquatic chemistry; chemical equilibria and rates in natural waters (3rd Ed.), John Wiley & Sons, New York, 1022p.
  16. Wang, W.S., Zhen, L., Xu, C.-Y., Yang, L., and Shao, W.-Z. (2008) Room temperature synthesis of hierarchical $SrCO_3$ architectures by a surfactant-free aqueous solution route. Crystal Growth & Design, 8, 1734-1740. https://doi.org/10.1021/cg070564f
  17. Wang, H., Huang, W., and Han, Y. (2013) Diffusionreaction compromise the polymorphs of precipitated calcium carbonate. Particuology, 11, 301-308. https://doi.org/10.1016/j.partic.2012.10.003
  18. Yu, S.H., Colfen, H., and Antonietti, M. (2003) Polymercontrolled morphosynthesis and mineralization of metal carbonate superstructures. The Journal of Physical Chemistry B, 107, 7396-7405.
  19. Zhao, Y.H., Jia, Q.Y., Gao, Y., and Wang, X.J. (2011) Effect of EDTA on the morphology and size of $SrCO_3$ particles during crystallization. Advanced Materials Research, 148, 1551-1555.
  20. Zhou, G.T., Yao, Q.Z., Ni, J., and Jin, G. (2009) Formation of aragonite mesocrystals and implication for biomineralization. American Mineralogist, 94, 293-302. https://doi.org/10.2138/am.2009.2957

Cited by

  1. Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite vol.10, pp.11, 2015, https://doi.org/10.3390/cryst10110960
  2. Electromagnetic Interference Shielding Behavior of Magnetic Carbon Fibers Prepared by Electroless FeCoNi-Plating vol.14, pp.14, 2021, https://doi.org/10.3390/ma14143774