DOI QR코드

DOI QR Code

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol (Energy Harvesting Devices Research Section, Information & Communications Core Technology Research Laboratory) ;
  • Lee, Haksun (Energy Harvesting Devices Research Section, Information & Communications Core Technology Research Laboratory) ;
  • Eom, Yong-Sung (Energy Harvesting Devices Research Section, Information & Communications Core Technology Research Laboratory) ;
  • Choi, Kwang-Seong (Energy Harvesting Devices Research Section, Information & Communications Core Technology Research Laboratory)
  • Received : 2015.06.10
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

Keywords

References

  1. A. Yu, J. H. Lau, S. W. Ho, A. Kumar, W. Y. Hnin, W. S. Lee, M. C. Jong, V. N. Sekhar, V. Kripesh, D. Pinjala, S. Chen, C.-F. Chan, C.-C. Chao, C.-H. Chiu, C.-M. Huang and C. Chen, "Fabrication of High Aspect Ratio TSV and Assembly with Fine-Pitch Low-Cost Solder Microbump for Si Interposer Technology with High-Density Interconnects", IEEE Transactions on Components, Packaging, Manufacturing Technologies (CPMT), 1(9), 1336 (2011). https://doi.org/10.1109/TCPMT.2011.2155655
  2. Y. Orii, K. Toriyama, H. Noma, Y. Oyama, H. Nishiwaki, M. Ishida, T. Nishio, N. C. Labianca and C. Feger, "Ultrafinepitch C2 Flip Chip Interconnections with Solder-Capped Cu Pillar Bumps", Proc. of the 59th Electronic Components and Technology Conference (ECTC), 948 (2009).
  3. Y. H. Hu, C. S. Liu, M. J. Lii, A. L. Manna, K. J. Rebibis and M. Zhao, "3D Stacking Using Cu-Cu Direct Bonding for 40 ${\mu}m$ Pitch and Beyond", Proc. of the 4th European System Integration Technology Conference (ESTC), (2012).
  4. R. Agarwal, W. Zhang, P. Limaye and W. Ruythooren, "High Density Cu-Sn TLP Bonding for 3D Integration", Proc. of the 59th Electronic Components and Technology Conference (ECTC), 345, (2009).
  5. M. S. Kim, Y. H. Ko, J. H. Bang and C. W. Lee, "The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump", J. Microelectron. Packag. Soc., 19(3), 15 (2012). https://doi.org/10.6117/kmeps.2012.19.3.015
  6. J. B. Kim, S. H. Kim and Y. B. Park, "Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Microbump for 3-D IC Packages", J. Microelectron. Packag. Soc., 20(2), 59 (2013). https://doi.org/10.6117/kmeps.2013.20.2.059
  7. K.-S. Choi, K. J. Sung, B. O. Lim, H. C. Bae, S. Jung, J. T. Moon and Y. S. Eom, "Novel Maskless Bumping Material for 3D Integration", ETRI J., 32(2), 342 (2010). https://doi.org/10.4218/etrij.10.0209.0396
  8. K.-S. Choi, S. W. Chu, J. J. Lee, K. J. Sung, H. C. Bae, B. O. Lim, J. T. Moon and Y. S. Eom, "Novel Bumping Material for Solder-on-Pad Technology", ETRI J., 33(4), 637 (2011). https://doi.org/10.4218/etrij.11.0210.0298
  9. Y.-S. Eom, K. S. Choi, S.-H. Moon, J. H. Park, J. H. Lee and J. T. Moon, "Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive", ETRI J., 33(6), 864 (2011). https://doi.org/10.4218/etrij.11.0110.0520
  10. K.-J. Sung, K. S. Choi, H. C. Bae, Y. H. Kwon and Y. S. Eom, "Novel Bumping and Underfill Technologies for 3D IC Integration", ETRI J., 34(5), 706 (2012). https://doi.org/10.4218/etrij.12.0112.0104
  11. K.-S. Choi, H. E. Bae, H. C. Bae and Y. S. Eom, "Novel Bumping Process for Solder on Pad Technology", ETRI J., 35(2), 340 (2013). https://doi.org/10.4218/etrij.13.0212.0302
  12. Y.-S. Eom, J. H. Son, H. C. Bae, K. S. Choi and H. S. Choi, "Optimization of material and process for fine pitch LVSoP technology", ETRI J., 35(4), 625 (2013). https://doi.org/10.4218/etrij.13.1912.0007
  13. J.-H. Son, Y.-S. Eom, K.-S. Choi, H. S. Lee, H. C. Bae and J. H. Lee, "HV-SoP Technology for Maskless Fine Pitch Bumping Process", ETRI J., 37(3), 523 (2015). https://doi.org/10.4218/etrij.15.0114.0578
  14. IPC Std. J-STD-005, "Requirements for Soldering Pastes".
  15. Y.-S. Eom, J. W. Back, J. T. Moon, J. D. Nam and J. M. Kim "Characterization of Polymer Matrix and Low Melting Point Solder for Anisotropic Conductive Film", Microelectron. Eng., 85, 327 (2008). https://doi.org/10.1016/j.mee.2007.07.005
  16. Y.-S. Eom, K.-S. Jang, J.-T. Moon and J. D. Nam, "Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder", ETRI J., 32(3), 414 (2010). https://doi.org/10.4218/etrij.10.0109.0400
  17. Y.-S. Eom, J.-H. Son, K.-S. Jang, H. S. Lee, H. C. Bae and J. H. Lee, "Characterization of fluxing and hybrid underfills with micro-encapsulated catalyst for long pot life", ETRI J., 36(3), 343 (2014). https://doi.org/10.4218/etrij.14.0113.0570