DOI QR코드

DOI QR Code

Basic Study for a Korean Lunar Simulant (KLS-1) Development

한국형 인공월면토(KLS-1) 개발을 위한 기초 연구

  • Ryu, Byung-Hyun (Korea Institute of Civil Engrg. and Building Technology) ;
  • Baek, Yong (Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Young-Seok (Korea Institute of Civil Engrg. and Building Technology) ;
  • Chang, Ilhan (Korea Institute of Civil Engrg. and Building Technology)
  • Received : 2015.06.11
  • Accepted : 2015.06.29
  • Published : 2015.07.31

Abstract

For the success of future missions to the Moon and other similar cosmic environments, understanding and utilization of the lunar regolith has become essential. However, due to the scarcity and unaffordability of real lunar regolith on Earth, a number of lunar regolith simulants (e.g., JSC-1; NASA) have been developed for experimental purposes. However, Korea does not have its own lunar regolith, even though the country is planning to actively pursue lunar and space missions in the 2020s. Thus, this study has been conducted to develop a Korean lunar simulant prototype via basic feasibility attempts (e.g., raw material selection, particle size and chemical composition simulation). Finally, the first prototype of Korea's own lunar simulant has been obtained, and denominated as KLS-1.

최근 우주개발의 중요성이 다시 부각되면서 주요 우주개발국들은 달 토양과 물리적 화학적 특성이 유사한 인공월면토(lunar simulant)를 개발하여 각종 연구에 활용하고 있다. 달 토양은 지구 토양과 생성 매커니즘과 지반공학적 거동이 다르기 때문에 완벽하게 모사하는 것이 어렵고 제작비용이 많이 소모된다. 기존 인공월면토 중 국제적으로 가장 널리 사용되고 있는 재료는 미국항공우주국(NASA)에서 제작한 JSC-1A이며, 우리나라는 아직 국제적으로 공인된 인공월면토가 없는 실정이다. 따라서 본 연구에서는 국내 지반재료를 이용한 한국형 인공월면토 개발을 위한 기초연구를 수행하여 그 시제품으로 KLS-1(Korea lunar simulant - type 1)을 제시하였다. KLS-1은 기존 국외 인공월면토들과 비교하여 유사성과 경제성이 우수하여 향후 국내 우주개발 사업뿐만 아니라 각종 국제연구에 폭 넓게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Alshibli, K. and Hasan, A. (2009), "Strength Properties of JSC-1A Lunar Regolith Simulant", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.5, pp.673-679. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000068
  2. Battler, M. M. and Spray, J. G. (2009), "The Shawmere Anorthosite and OB-1 as Lunar Highland Regolith Simulants", Planetary and Space Science 57, No.14-15, pp.2128-2131. https://doi.org/10.1016/j.pss.2009.09.003
  3. Binder, A. B. (1974), On the Origin of the Moon by Rotational Fission. The moon, Vol.11, No.1-2, pp.53-76. https://doi.org/10.1007/BF01877794
  4. Bui, H. H., Kobayashi, T., Fukagawa, R., and Wells, J. C. (2009), "Numerical and Experimental Studies of Gravity Effect on the Mechanism of Lunar Excavations", Journal of Terramechanics, Vol.46, No.3, pp.115-124. https://doi.org/10.1016/j.jterra.2009.02.006
  5. Carrier, W. (2003), "Particle Size Distribution of Lunar Soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.29, No.10, pp. 956-959.
  6. Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., and Pambaguian, L. (2014), "Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology", Acta Astronautica, Vol.93, pp.430-450. https://doi.org/10.1016/j.actaastro.2013.07.034
  7. Chua, K. M., Pringle, S., and Johnson, S. W. (1994), "A Simple Method of Producing Lunar Soil Simulants for Engineering Studies", In Engineering, construction, and operations in space IV.) ASCE, Albuquerque, New Mexico, United States, pp.867-877.
  8. Colwell, J. E., Batiste, S., Horanyi, M., Robertson, S., and Sture, S. (2007), "Lunar Surface: Dust Dynamics and Regolith Mechanics", Reviews of Geophysics, Vol.45, No.2, pp.1-16.
  9. Hockey, T. A. (1986), The book of the moon : a lunar introduction to astronomy, geology, space physics, and space travel. 1st edn. New York, Prentice Hall Press.
  10. Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K. (1998), Properties of Lunar Soil Simulant Manufactured in Japan. In Space 98.) American Society of Civil Engineers, pp.462-468.
  11. Kim, H. S., Kil, Y., and Lee, M. W. (2013), "Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwondo, Korea", Journal of the Korean earth science society, Vol.34, No.2, pp.109-119. https://doi.org/10.5467/JKESS.2013.34.2.109
  12. Kim, K. J., Lee, J.-H., Seo, H., Ju, G., Lee, S.-R., Choi, G.-H., Sim, E.-S., and Lee, T. S. (2014), "An Introduction to the Lunar and Planetary Science Activities in Korea", Advances in Space Research, Vol.54, No.10, pp.2000-2006. https://doi.org/10.1016/j.asr.2013.05.009
  13. Klosky, J., Sture, S., Ko, H., and Barnes, F. (2000), "Geotechnical Behavior of JSC-1 Lunar Soil Simulant", Journal of Aerospace Engineering, Vol.13, No.4, pp.133-138. https://doi.org/10.1061/(ASCE)0893-1321(2000)13:4(133)
  14. Latham, G., Ewing, M., Dorman, J., Lammlein, D., Press, F., Toksoz, N., Sutton, G., Duennebier, F., and Nakamura, Y. (1972), Moonquakes and lunar tectonism. The moon, Vol.4, No.3-4, pp. 373-382. https://doi.org/10.1007/BF00562004
  15. Mackenzie, D. (2003) The big splat, or, How our moon came to be. Hoboken, N.J., John Wiley & Sons.
  16. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., and Nakano, T. (2009), "3D Shape Characterization and Image-Based DEM Simulation of the Lunar Soil Simulant FJS-1", Journal of Aerospace Engineering, Vol.22, No.1, pp.15-23. https://doi.org/10.1061/(ASCE)0893-1321(2009)22:1(15)
  17. Mckay, D. S., Carter, J. L., Boles, W. W., Allen, C. C., and Allton, J. H. (1994), "JSC-1: A New Lunar Soil Simulant", Engineering, construction, and operations in space IV, Vol.2, pp.857-866.
  18. Mckay, D. S., Heiken, G. H., Taylor, R. M., Clanton, U. S., Morrison, D. A., and Ladle, G. H. (1972), Apollo 14 soils: Size distribution and particle types In Proceedings of Third Lunar Science Conference, Vol.1, pp.983-994.
  19. Min, K. W. and Jeon, H. I. (1999), "Characterization of Basalts Distributed in Cheolwon Area", Journal of Advanced Mineral Aggregate Composites, Vol.4, pp.255-262.
  20. Mitler, H. E. (1975), Formation of an iron-poor Moon by partial capture, or: Yet another exotic theory of lunar origin. Icarus, Vol.24, No.2, pp.256-268. https://doi.org/10.1016/0019-1035(75)90102-5
  21. Morris, R. V. (1980), "Origins and Size Distribution of Metallic Iron Particles in the Lunar Regolith", In The 11th Lunar and Planetary Science Conference.) Pergamon Press, Houston, Vol.2, pp.1697-1712.
  22. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kanamori, H., Aoki, S., Yokoyama, T., Shimizu, H., Miyasaka, J., and Ohdoi, K. (2010), "Discrete Element Method Analysis of Single Wheel Performance for a Small Lunar Rover on Sloped Terrain", Journal of Terramechanics, Vol.47, No.5, pp.307-321. https://doi.org/10.1016/j.jterra.2010.04.001
  23. Nakashima, H., Shioji, Y., Tateyama, K., Aoki, S., Kanamori, H., and Yokoyama, T. (2008), "Specific Cutting Resistance of Lunar Regolith Simulant under Low Gravity Conditions", Journal of Space Engineering, Vol.1, No.1, pp.58-68. https://doi.org/10.1299/spacee.1.58
  24. Nam, J.-M., Yun, J.-M., Song, Y.-S., and Kim, J.-H. (2008), "Analysis of Engineering Properties to Basalt in Cheju Island", Journal of the Korean geosynthetics society, Vol.7, No.1, pp.13-21.
  25. Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C. (2009), "Timing of Crystallization of the Lunar Magma Ocean Constrained by the Oldest Zircon", Nature Geoscience, Vol.2, No.2, pp.133-136. https://doi.org/10.1038/ngeo417
  26. Park, Soo, J., Lee, Sung, E., and Choi Heebok (2014), "Application of Powdered Waste Glasses and Calcium Carbonate for Improving the Properties of Artificial Lightweight Aggregate Made of Recycled Basalt Powder Sludge", Journal of The Korean Institute of Building Construction, Vol.14, No.3, pp.230-236. https://doi.org/10.5345/JKIBC.2014.14.3.230
  27. Rasmussen, K. L. and Warren, P. H. (1985), "Megaregolith Thickness, Heat Flow, and the Bulk Composition of the Moon", Nature, Vol.313, No.5998, pp.121-124. https://doi.org/10.1038/313121a0
  28. Schnetzler, C. C. and Nava, D. F. (1971), "Chemical Composition of Apollo 14 Soils 14163 and 14259", Earth and Planetary Science Letters, Vol.11, No.1-5, pp.345-350. https://doi.org/10.1016/0012-821X(71)90191-9
  29. Sibille, L., Carpenter, P., Schlagheck, R., and French, R. A. (2005), Lunar regolith simulant materials: recommendations for standardization, production, and usage. Marshall Space Flight Center.
  30. Stroud, R. (2009), The book of the moon. New York, Walker & Co.
  31. Taylor, L. and Cirlin, E.-H. (1985), A Review of ESR Studies on Lunar Samples In Proceedings of ESR dating and dosimetry. IONICS, pp.19-39.
  32. Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V., and Mckay, D. S. (2001), "Lunar Mare Soils: Space Weathering and the Major Effects of Surface-correlated Nanophase Fe", Journal of Geophysical Research: Planets, Vol.106, No.E11, pp.27985-27999. https://doi.org/10.1029/2000JE001402
  33. Taylor, S. R. (1975), Lunar science: a post-Apollo view; scientific results and insights from the lunar samples. New York, Pergamon Press.
  34. Ueda, T., Matsushima, T., and Yamada, Y. (2010), "Effect of Grain Size Distribution on Mechanical Properties of Lunar Soil", In Earth and Space 2010. American Society of Civil Engineers, pp.49-56.
  35. Weiblen, P. W., Murawa, M. J., and Reid, K. J. (1990), "Preparation of simulants for lunar surface materials", In Engineering, Construction, and Operations in Space II. (Johnson, S. W., and Wetzel, J. P. (eds)) ASCE, Albuquerque, New Mexico, United States, pp.98-106.
  36. Weill, D. F., Greive, R. A., Mccallum, I. S., and Bottinga, Y. (1971), "Mineralogy-petroloy of Lunar Samples. Microprobe Studies of Samples 12021 and 12022; Viscosity of Melts of Selected Lunar Compositions", In The Second Lunar Science Conference.) M.I.T. Press, Vol. 1, pp. 413-430.
  37. Yeon, G. S., Lee, Y. S., and Kim, C. Y. (1999), "Physical and Mechanical Properties of Polymer Concrete using Chulwon Basalt", Journal of Advanced Mineral Aggregate Composites, Vol.4, pp. 245-254.
  38. Yoo, S. H., Kim, H. D., Lim, J. H., and Park, J. S. (2014), Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears. Journal of The Korean Society for Aeronautical and Space Sciences, Vol.42, No.12, pp.1037-1044. https://doi.org/10.5139/JKSAS.2014.42.12.1037
  39. Zeng, X., He, C., Oravec, H., Wilkinson, A., Agui, J., and Asnani, V. (2009), "Geotechnical Properties of JSC-1A Lunar Soil Simulant", Journal of Aerospace Engineering, Vol.23, No.2, pp.111-116. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000014
  40. Zheng, Y., Wang, S., Ouyang, Z., Zou, Y., Liu, J., Li, C., Li, X., and Feng, J. (2009), "CAS-1 Lunar Soil Simulant", Advances in Space Research, Vol.43, No.3, pp.448-454. https://doi.org/10.1016/j.asr.2008.07.006

Cited by

  1. Bearing Capacity of Shallow Footings in Simulated Lunar Environments Using Centrifuge Tests vol.144, pp.7, 2018, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001901
  2. Geotechnical characterisation of two new low-fidelity lunar regolith analogues (UoM-B and UoM-W) for use in large-scale engineering experiments vol.173, pp.None, 2020, https://doi.org/10.1016/j.actaastro.2020.04.025
  3. Multidisciplinary Design Optimization for a Solar-Powered Exploration Rover Considering the Restricted Power Requirement vol.13, pp.24, 2020, https://doi.org/10.3390/en13246652
  4. 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가 vol.37, pp.8, 2015, https://doi.org/10.7843/kgs.2021.37.8.51
  5. Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests vol.38, pp.4, 2021, https://doi.org/10.5140/jass.2021.38.4.237