References
- Beard, A.N. (2010), "Tunnel safety, risk assessment and decision-making", Tunn. Undergr. Space Technol., 25(1), 91-94. https://doi.org/10.1016/j.tust.2009.07.006
- Bukowski, P. (2011), "Water hazard assessment in active shafts in upper silesian coal basin mines", Mine Water Environ., 30(4), 302-311. https://doi.org/10.1007/s10230-011-0148-2
- Choi, H.H., Cho, H.N. and Seo, J.W. (2004), "Risk assessment methodology for underground construction projects", J. Construct. Eng. Manage., 130(2), 258-272. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:2(258)
- Ding, L.Y. and Zhou, C. (2013), "Development of web-based system for safety risk early warning in urban metro construction", Automat. Constr., 34, 45-55. https://doi.org/10.1016/j.autcon.2012.11.001
- Duddeck, H. (1996), "Challenges to tunnelling engineers", Tunn. Undergr. Space Technol., 11(1), 5-10. https://doi.org/10.1016/0886-7798(96)84164-2
- Einstein, H.H. (1996), "Risk and risk analysis in rock engineering", Tunn. Undergr. Space Technol., 11(2), 141-155. https://doi.org/10.1016/0886-7798(96)00014-4
- Eskesen, S.D., Tengborg, P., Kampmann, J. and Veicherts, T.H. (2004), "Guidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2", Tunn. Undergr. Space Technol., 19(3), 217-237. https://doi.org/10.1016/j.tust.2004.01.001
- Fouladgar, M.M., Yazdani-Chamzini, A. and Zavadskas, E.K. (2012), "Risk evaluation of tunneling projects", Arch. Civil Mech. Eng., 12(1), 1-12. https://doi.org/10.1016/j.acme.2012.03.008
- Jiang, A.N., Wang, S.Y. and Tang, S.L. (2011), "Feedback analysis of tunnel construction using a hybrid arithmetic based on Support Vector Machine and Particle Swarm Optimisation", Automat. Constr., 20(4), 482-489. https://doi.org/10.1016/j.autcon.2010.11.016
- Karwowski, W.A. (1986), "Applications of approximate reasoning in risk analysis", In: Applications of Fuzzy Set Theory in Human Factors, (Waldmar and Anil Mital Ed.), Elsevier, New York, NY, USA, pp. 227-243.
- Kong, W.K. (2011), "Water ingress assessment for rock tunnels: A tool for risk planning", Rock Mech. Rock Eng., 44(6), 755-765. https://doi.org/10.1007/s00603-011-0163-4
- Li, L.P. (2009), "Study on catastrophe evolution of karst water inrush and its engineering application of high risk karst tunnel", Ph.D. Dissertation; Shandong University, Jinan, China.
- Li, L.P., Lei, T., Li, S.C., Zhang, Q.Q., Xu, Z.H. and Zhou, Z.Q. (2014), "Risk assessment of water inrush in karst tunnels and software development", Arabian J. Geosci., 8(4), 1843-1854. DOI: 10.1007/s12517-014-1365-3 (March 25, 2014).
- Li, S.C., Xue, Y.G., Zhang, Q.S., Li, S.C., Li, L.P., Sun, K.G., Ge, Y.H., Su, M.X., Zhong, S.H. and Li, X. (2008), "Key technology study on comprehensive prediction and early-warning of geological hazards during tunnel construction in high- risk karst areas", Chinese J. Rock Mech. Eng., 7, 1297-1307.
- Li, X.P. and Li, Y.N. (2014), "Research on risk assessment system for water inrush in the karst tunnel construction based on GIS: Case study on the diversion tunnel groups of the Jinping II Hydropower Station", Tunn. Undergr. Space Technol., 40, 182-191. https://doi.org/10.1016/j.tust.2013.10.005
- Matthias, S., Niels, P.H., Arild, R. and Harald, B. (2012), "Risk assessment of road tunnels using Bayesian networks", Procedia - Social and Behavioral Sciences, 48, 2697-2706. https://doi.org/10.1016/j.sbspro.2012.06.1239
- Merad, M.M., Verdel, T., Roy, B. and Kouniali, S. (2004), "Use of multi-criteria decision-aids for risk zoning and management of large area subjected to mining-induced hazards", Tunn. Undergr. Space Technol., 19(2), 125-138. https://doi.org/10.1016/S0886-7798(03)00106-8
- Mohamed, E.T. (2003), "Circular tunnel in a semi-infinite aquifer", Tunn. Undergr. Space Technol., 18(1), 49-55. https://doi.org/10.1016/S0886-7798(02)00102-5
- Saaty, T.L. (1979), "Applications of analytical hierarchies", Math Comput Simuin, 21(1), 1-20. https://doi.org/10.1016/0378-4754(79)90101-0
- Saaty, T.L. (1990), "How to make a decision: the analytic hierarchy process", Eur. J. Oper. Res., 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
- Shi, S.S., Li, S.C., Li, L.P., Zhou, Z.Q. and Wang, J. (2013), "Advance optimized classification and application of surrounding rock based on fuzzy analytic hierarchy process and Tunnel Seismic Prediction", Automat. Constr., 37, 217-222.
- Wang, Y., Yang, W.F., Li, M. and Liu, X. (2012), "Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation", Int. J. Rock Mech. Min. Sci., 52, 50-55. https://doi.org/10.1016/j.ijrmms.2012.03.006
- Xu, Z.H., Li, S.C., Li, L.P., Chen, J. and Shi, S.S. (2011), "Construction permit mechanism of karst tunnels based on dynamic assessment and management of risk", Chinese J. Geotech. Eng., 33(11), 1714-1725.
- Yoo, C., Jeon, Y.W. and Choi, B.S. (2006), "IT-based tunnelling risk management system (IT-TURISK) - Development and implementation", Tunn. Undergr. Space Technol., 21(2), 190-202. https://doi.org/10.1016/j.tust.2005.05.002
- Zhang, Q.S., Li, S.C., Hang, H.W., Ge, Y.H., Liu, R.T. and Zhang, X. (2009), "Study on risk evaluation and water inrush disaster preventing technology during construction of karst tunnels", J. Shandong Univ. (Eng. Sci.), 39(3), 106-110.
Cited by
- A multi-factor comprehensive risk assessment method of karst tunnels and its engineering application 2019, https://doi.org/10.1007/s10064-017-1214-1
- Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation vol.10, pp.4, 2016, https://doi.org/10.12989/gae.2016.10.4.471
- Risk assessment of water inrush in karst tunnels based on a modified grey evaluation model: Sample as Shangjiawan Tunnel vol.11, pp.4, 2016, https://doi.org/10.12989/gae.2016.11.4.493
- Analysis of Pipe-Roof in Tunnel Exiting Portal by the Foundation Elastic Model vol.2017, 2017, https://doi.org/10.1155/2017/9387628
- Numerical Simulation on the Seepage Properties of Soil-Rock Mixture vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/1859319
- Fuzzy risk assessment of a deeply buried tunnel under incomplete information vol.5, pp.10, 2018, https://doi.org/10.1098/rsos.180305
- A New Advance Classification Method for Surrounding Rock in Tunnels Based on the Set-Pair Analysis and Tunnel Seismic Prediction System vol.36, pp.4, 2018, https://doi.org/10.1007/s10706-018-0471-5
- Time-varying characteristics on migration and loss of fine particles in fractured mudstone under water flow scour vol.12, pp.5, 2019, https://doi.org/10.1007/s12517-019-4286-3
- Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.671
- Study on Early Warning Method for Water Inrush in Tunnel Based on Fine Risk Evaluation and Hierarchical Advance Forecast vol.9, pp.9, 2019, https://doi.org/10.3390/geosciences9090392
- Optimisation of Treatment Scheme for Water Inrush Disaster in Tunnels Based on Fuzzy Multi-criteria Decision-Making in an Uncertain Environment vol.44, pp.10, 2015, https://doi.org/10.1007/s13369-019-03827-5
- Risk assessment of water inrush in tunnels based on attribute interval recognition theory vol.27, pp.2, 2015, https://doi.org/10.1007/s11771-020-4313-2
- Risk Assessment of Tunnel Construction Based on Improved Cloud Model vol.34, pp.3, 2015, https://doi.org/10.1061/(asce)cf.1943-5509.0001421
- Modelling the coupled fracture propagation and fluid flow in jointed rock mass using FRACOD vol.22, pp.6, 2020, https://doi.org/10.12989/gae.2020.22.6.529
- Development and application of a floor failure depth prediction system based on the WEKA platform vol.23, pp.1, 2015, https://doi.org/10.12989/gae.2020.23.1.051