DOI QR코드

DOI QR Code

Optimal Life Cycle design of Water Pipe System using Genetic Algorithm

상수관망 최적 생애주기 설계를 위한 유전알고리즘의 적용

  • Lee, Seungyub (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Yoo, Do Guen (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Jung, Donghwi (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Kim, Joong Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 이승엽 (고려대학교 방재과학기술연구소) ;
  • 유도근 (고려대학교 방재과학기술연구소) ;
  • 정동휘 (고려대학교 방재과학기술연구소) ;
  • 김중훈 (고려대학교 건축사회환경공학부)
  • Received : 2015.02.12
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

In this study, a model is developed based on Life Cycle Energy Analysis (LCEA) method with Genetic Algorithm (GA) to determine optimal diameter of Water Distribution System (WDS). For hydraulic analysis the EPANET2.0 program is linked with developed model, pipe-aging equation and pipe-breakage equation are built in to developed model to simulate pipe change through life cycle. The model is then applied to two sample WDSs for optimal energy design. After determining optimal diameter for each WDS, the total cost is calculated based on determined diameter and compared with well-known optimal diameter set of each WDS. Results show that optimal energy design of WDSs through the developed model can be an alternative option for optimal design of WDSs for reducing energy with lower in cost.

상수관망은 중요 사회기반 시설물 중 하나로, 상수관망을 구성하는 수 많은 관을 통해 각 수요지로 물을 공급 및 배분하는 역할을 한다. 수 많은 관들로 구성된 상수관망의 설계는 여러 수리학적 조건을 고려하여 진행되기에 그리 간단한 문제는 아니다. 이에 많은 연구자들이 최적화 기법을 도입하여 상수관망의 설계에 사용을 하고 있다. 본 연구에서는 생애주기 에너지 분석을 통한 최적 관경을 결정하기 위한 모형을 개발하였다. 개발한 모형은 최적 설계를 위해 유전자 알고리즘을 도입하였고, 수리해석을 위해 EPANET2.0을 연동하고 생애주기 동안에 관의 변화를 모의하기 위한 노후도식과 관 파손확률 공식을 적용하였다. 모형은 총 두 곳의 샘플 관망에 적용하였으며, 두 관망에 대한 에너지 기반 최적 설계를 진행하였다. 에너지 최적 관경 조합에 대한 비용을 계산하여 비용 최적 관경 조합과 비교를 하였으며, 이를 통해 에너지 기반 최적 설계가 비용 측면에서도 큰 불이익이 없이 진행될 수 있음을 보였다.

Keywords

References

  1. Alperovits, E. and Shamir, U., "Design of optimal water distribution systems." Water Resources Research, Vol. 13, No. 6, pp. 885-900, 1977. DOI: http://dx.doi.org/10.1029/WR013i006p00885
  2. Dandy, G. C., Simpson, A. R., and Murphy, L. J. "An improved genetic algorithm for pipe network optimization.", Water Resour. Res., Vol. 32, No. 2, pp. 449-458, 1996. DOI: http://dx.doi.org/10.1029/95WR02917
  3. Savic, D. A., & Walters, G. A., "Genetic algorithms for least-cost design of water distribution networks.", Journal of Water Resources Planning and Management, Vol. 123, No. 2, pp. 67-77, 1997. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
  4. Cunha, M. D. C., & Sousa, J. "Water distribution network design optimization: simulated annealing approach.", Journal of Water Resources Planning and Management, Vol. 125, No. 4, pp. 215-221, 1999. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:4(215)
  5. Eusuff, M. M., & Lansey, K. E., "Optimization of water distribution network design using the shuffled frog leaping algorithm.", Journal of Water Resources Planning and Management, Vol. 129, No. 3, pp. 210-225, 2003. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
  6. Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., & Tan, C. L., "Ant colony optimization for design of water distribution systems.", Journal of water resources planning and management, Vol. 129, No. 3, pp. 200-209, 2003. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  7. Geem, Z. W. "Optimal cost design of water distribution networks using harmony search,", Enegineering Optimization, Vol. 38, No. 3, 2006. DOI: http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000020
  8. Wu, W., Simpson, A. R., & Maier, H. R.. "Accounting for greenhouse gas emissions in multiobjective genetic algorithm optimization of water distribution systems." Journal of Water Resources Planning and Management, 136(2), 146-155, 2009. DOI: http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000020
  9. Wu, W., Maier, H. R., & Simpson, A. R., "Single-objective versus multiobjective optimization of water distribution systems accounting for greenhouse gas emissions by carbon pricing." Journal of Water Resources Planning and Management, 136(5), 555-565. 2009. DOI: http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000072
  10. Racoviceanu, A. I., Karney, B. W., Kennedy, C. A., & Colombo, A. F. "Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems." Journal of Infrastructure Systems, 13(4), 261-270. 2007. DOI: http://dx.doi.org/10.1061/(ASCE)1076-0342(2007)13:4(261)
  11. Filion, Y. R., MacLean, H. L., and Karney, B. W., "Life-Cycle Energy Analysis of a Water Distribution System,", Journal of Infrastructure systems, Vol. 10, No. 4, pp.120-130, 2004. DOI: http://dx.doi.org/10.1061/(ASCE)1076-0342(2004)10:3(119)
  12. Lee, S.Y., Yoo, D.G, Kim, J.H., "Life Cycle Determination of Water Distribution System using Life Cycle Energy Analysis", Journal of Korean Society of Water and Wastewater, Vol. 29, No.1, Feb 2015.
  13. Holland, J. H., Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press. 1975.
  14. Lee, S. Y., "Research on Life Cycle Energy Analysis of Water distribution System", Master's Thesis, Korea University, 2014.
  15. KICT (Korea Institute of Construction Technology). Research for Rehabilitation Methods Characteristic and Usage of Water Distribution System Pipe, 2001.
  16. Kim, H. J. "A study on the optimal decision-making model for rehabilitation of water distribution systems", Master's Thesis, Korea University, 1994.
  17. Shamir, U., and Howard, C. D. D., "An analytic approach to scheduling pipe replacement.", J. Am. Water Works Assoc., Vol. 71, No. 5, pp. 248-258, 1979.
  18. Mononobe, Hydraulics, Iwanami, pp. 155-158, 1960
  19. Baek, C. W. "Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Using ReHS", Master's Thesis, Korea University, 2002
  20. Schaake, J. and Lai, D., Linear programming and dynamic programming -application of water distribution network design. Report 116, (MIT Press: Cambridge, MA). 1969.
  21. Cunha, M.C. and Sousa, J. "Hydraulic infrastructures design using simulated annealing." J. Infrastruct. Syst., Vol. 7, No. 1, pp. 32-39, 2001. DOI: http://dx.doi.org/10.1061/(ASCE)1076-0342(2001)7:1(32)
  22. Kim, J. H., Kim, T. G., Kim, J. H. and Yoon, Y. N., "A study on the pipe network system design using non-linear programming." Journal of Korean Water Resources Association, Vo. 27 No. 4, pp. 59-67, 1994.