DOI QR코드

DOI QR Code

A Comparison between C4 and Cation-exchange Columns as a Pre-separation Method for Mass Spectrometric Analysis to Characterize a Global Identification of Phosphopeptides and Phosphorylation Sites

세포내 총체적인 인산화 펩타이드 및 인산화 위치 규명을 위해 질량분석기 전 단계의 C4 및 양이온 교환수지 칼럼 이용 방법의 비교

  • Kim, Hye-Jeong (Department of Molecular Medicine, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University) ;
  • Baek, Moon-Chang (Department of Molecular Medicine, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University)
  • 김혜정 (경북대학교 의과대학 분자의학교실 및 세포기질연구소) ;
  • 백문창 (경북대학교 의과대학 분자의학교실 및 세포기질연구소)
  • Received : 2015.03.25
  • Accepted : 2015.05.21
  • Published : 2015.06.30

Abstract

Protein phosphorylation is one of most important post-translational modifications (PTMs) and plays an important role in regulation of protein function. Here we develop a method for a global identification of phosphopeptides and phosphorylation sites using nano-LC MS/MS. We compared two separation methods, C4 and strong cation ion exchange (SCX). Before phosphopeptides enrichment with $TiO_2$, total proteins from Rat 1 cells have been separated using C4 column or tryptic peptides of proteins from the cells have been separated using SCX column. Finally, we have detected 52 phosphorylation sites on 41 proteins from SCX method and 375 phosphorylation sites on 252 proteins from C4 method, and determined the function and localization of identified phosphoproteins using DAVID software. In particular, we showed new phosphorylation sites from membrane proteins related to various cell signaling mechanisms. This method may contribute to study global signal networks induced by various signals including ligands and drugs.

Keywords

References

  1. Hunter, T. : The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 583 (1998). https://doi.org/10.1098/rstb.1998.0228
  2. Hunter, T. : Signaling 2000 and beyond. Cell 100, 113 (2000). https://doi.org/10.1016/S0092-8674(00)81688-8
  3. Pawson, T. and Nash, P. : Assembly of cell regulatory systems through protein interaction domains. Science 300, 445 (2003). https://doi.org/10.1126/science.1083653
  4. Mumby, M. and Brekken, D. : Phosphoproteomics: new insights into cellular signaling. Genome Biol. 6, 230 (2005). https://doi.org/10.1186/gb-2005-6-9-230
  5. Machida, K., Mayer, B. J. and Nollau, P. : Profiling the Global Tyrosine phosphorylation state. Mol. Cell Proteomics 2, 215 (2003). https://doi.org/10.1074/mcp.R300002-MCP200
  6. Mclachlin, D. T. and Chait, B. T. : Improved ${\beta}$-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem. 75, 6826 (2003). https://doi.org/10.1021/ac034989u
  7. Lee, J., Xu, Y., Chen, Y., Sprung, R., Kim, S. C., Xie, S. and Zhao, Y. : Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics 6, 669 (2007). https://doi.org/10.1074/mcp.M600218-MCP200
  8. Nuhse, T. S., Stensballe, A., Jensen, O. N. and Peck, S. C. : Large-scale ananlysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2, 1234 (2003). https://doi.org/10.1074/mcp.T300006-MCP200
  9. Zhou, W., Merrick, B. A., Khaledi, M. G. and Tomer, K. B. : Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom 11, 273 (2000). https://doi.org/10.1016/S1044-0305(00)00100-8
  10. Zhang, X., Ye, J., Jensen, O. N. and Roepstorff, P. : Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent serial immobilized metal ion affinity chromatography (IMAC) enrichment. Mol. Cell. Proteomics 6, 2032 (2007). https://doi.org/10.1074/mcp.M700278-MCP200
  11. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. and Jorgensen, T. J. : Highly selective Enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873 (2005). https://doi.org/10.1074/mcp.T500007-MCP200
  12. Thingholm, T. E., Jorgensen, T. J., Jensen, O. N. and Larsen, M. R. : Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1, 1929 (2006). https://doi.org/10.1038/nprot.2006.185
  13. Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B. and Heck, A. J. : Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935 (2004). https://doi.org/10.1021/ac0498617
  14. Aebersold, R. and Mann, M. : Mass spectrometry-based proteomics. Nature 422, 198 (2003). https://doi.org/10.1038/nature01511
  15. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. and Mann, M. : Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635 (2006). https://doi.org/10.1016/j.cell.2006.09.026
  16. Villen, J., Beausoleil, S. A., Gerber, S. A. and Gygi, S. P. : Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad Sci. 104, 1488 (2006).
  17. Imanishi, S. Y., Kochin, V., Ferraris, S. E., de Thonel, A., Pallari, H. M., Corthals, G. L. and Eriksson, J. E. : Reference-facilitated phosphoproteomics:fast and reliable phosphopeptide validation by ${\mu}LC$-ESI-Q-TOF MS/MS. Mol. Cell Proteomics 6, 1380 (2007). https://doi.org/10.1074/mcp.M600480-MCP200

Cited by

  1. Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract vol.28, pp.5, 2015, https://doi.org/10.11002/kjfp.2021.28.5.663