DOI QR코드

DOI QR Code

A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

점탄성 고분자 액체의 대진폭 전단유동거동 예측을 위한 간단한 해석방법

  • Chang, Gap-Shik (Reliability Assessment Team, FITI Testing & Research Institute) ;
  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 장갑식 (FITI시험연구원 신뢰성평가팀) ;
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2015.04.21
  • Accepted : 2015.05.28
  • Published : 2015.06.30

Abstract

Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated in large amplitude oscillatory shear (LAOS) flow fields over a wide range of strain amplitudes. In order to predict the nonlinear viscoelastic behavior of polymer liquids in strain-sweep experiments, a new analysis method including a simple empirical model was proposed and then its validity was thoroughly evaluated in this study. The results have shown that the suggested model is significant in 95% confidence level and predicts exactly the nonlinear viscoelastic behavior of polymer liquids over a whole range of strain amplitudes tested. The strain limits of linear viscoelastic response and nonlinear behavior indices were determined using this model to estimate the LAOS flow behavior in strain-sweep experiments. The master curves of strain limits and nonlinear behavior indices can be obtained by representing these data against the product of angular frequency by characteristic time. The LAOS flow behavior of polymer systems with various molecular weights and different concentrations can well be predicted from these master curves.

Keywords

References

  1. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  2. S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-Polyisoprene", Polymer, 2006, 47, 7282-7288. https://doi.org/10.1016/j.polymer.2006.03.116
  3. J. A. Yosick, A. J. Giacomin, and P. Moldenaers, "A Kinetic Network Model for Nonlinear Flow Behavior of Molten Plastics in both Shear and Extension", J. Non-Newt. Fluid Mech., 1997, 70, 103-123. https://doi.org/10.1016/S0377-0257(96)01535-2
  4. W. Philippoff, "Further Dynamic Investigation on Polymers", J. Appl. Phys., 1954, 25, 1102-1107. https://doi.org/10.1063/1.1721822
  5. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I): Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
  6. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
  7. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. https://doi.org/10.1007/s00397-005-0014-x
  8. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. https://doi.org/10.1122/1.3258278
  9. R. S. Jeyaseelan, A. J. Giacomin, and J. G. Oakley, "Simplification of Network Theory for Polymer Melts in Nonlinear Oscillatory Shear", AIChE J., 1993, 39, 846-854. https://doi.org/10.1002/aic.690390513
  10. R. S. Jeyaseelan and A. J. Giacomin, "Structural Network Theory for a Filled Polymer Melt in Large Amplitude Oscillatory Shear", Polymer Gels and Networks, 1995, 3, 117-133. https://doi.org/10.1016/0966-7822(94)00041-5
  11. F. Yziquel, P. J. Carreau, and P. A. Tanguy, "Non-linear Viscoelastic Behavior of Fumed Silica Suspensions", Rheol. Acta, 1999, 38, 14-25. https://doi.org/10.1007/s003970050152
  12. L. Ma, J. Xu, P. A. Coulombe, and D. Wirtz, "Keratin Filament Suspensions Show Unique Micromechanical Properties", J. Biol. Chem., 1999, 274, 19145-19151. https://doi.org/10.1074/jbc.274.27.19145
  13. T. Narumi, H. See, A. Suzuki, and T. Hasegawa, "Response of Concentrated Suspensions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2005, 49, 71-85. https://doi.org/10.1122/1.1814112
  14. W. Yu, M. Bousmina, and C. Zhou, "Note on Morphology Determination in Emulsions via Rheology", J. Non-Newt. Fluid Mech., 2006, 133, 57-62. https://doi.org/10.1016/j.jnnfm.2005.11.001
  15. H. J. Ahn and K. W. Song, "Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields", Ann. Trans. Nordic Rheol. Soc., 2011, 19, 13-17.
  16. N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Materials", J. Non-Newt. Fluid Mech., 2000, 92, 67-80. https://doi.org/10.1016/S0377-0257(99)00110-X
  17. C. Daniel, I. W. Hamley, M. Wilhelm, and W. Mingvanish, "Non-linear Rheology of a Face-Centered Cubic Phase in a Diblock Copolymer Gel", Rheol. Acta, 2001, 40, 39-48. https://doi.org/10.1007/s003970000124
  18. C. Michon, C. Chapuis, V. Langendorff, P. Boulenguer, and G. Cuvelier, "Strain-Hardening Properties of Physical Weak Gels of Biopolymers", Food Hydrocolloids, 2004, 18, 999-1005. https://doi.org/10.1016/j.foodhyd.2004.04.005
  19. C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, "Nonlinear Elasticity in Biological Gels", Nature, 2005, 435, 191-194. https://doi.org/10.1038/nature03521
  20. T. S. K. Ng, G. H. McKinley, and R. H. Ewoldt, "Large Amplitude Oscillatory Shear Flow of Gluten Dough: A Model Power-Law Gel", J. Rheol., 2011, 55, 627-654. https://doi.org/10.1122/1.3570340
  21. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions: Oscillatory Shear Flow Behavior", Kor.-Aust. Rheol. J., 2006, 18, 67-81.
  22. E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Kor.-Aust. Rheol. J., 2010, 22, 279-289.
  23. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. https://doi.org/10.1007/s003970050185
  24. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105. https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
  25. G. S. Chang, Ph. D. Thesis, Pusan National University, Busan, Korea, 2010.
  26. I. F. MacDonald, B. D. Marsh, and E. Ashare, "Rheological Behavior for Large Amplitude Oscillatory Motion", Chem. Eng. Sci., 1969, 24, 1615-1625. https://doi.org/10.1016/0009-2509(69)80101-6
  27. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. https://doi.org/10.1122/1.549049
  28. H. C. Yen and L. V. McIntire, "Finite Amplitude Dynamic Motion of Viscoelastic Materials", Trans. Soc. Rheol., 1972, 16, 711-726. https://doi.org/10.1122/1.549272
  29. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing: Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  30. R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000.
  31. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203.
  32. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
  33. F. E. Bailey, Jr. and J. V. Koleske, "Poly(Ethylene Oxide)", Academic Press, New York, 1976.
  34. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (Polyethylene Oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101.
  35. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(Ethylene Oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585.
  36. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly (Ethylene Oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. https://doi.org/10.1016/S0032-3861(96)00859-2
  37. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204. https://doi.org/10.1016/0377-0257(88)85013-4
  38. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids", 2nd Ed., Vol. 2, John Wiley & Sons, New York, 1987.
  39. L. H. Gross and B. Maxwell, "The Limit of Linear Viscoelastic Response in Polymer Melts as Measured in the Maxwell Orthogonal Rheometer", Trans. Soc. Rheol., 1972, 16, 577-601. https://doi.org/10.1122/1.549282
  40. R. I. Tanner, "Network Rupture and the Flow of Concentrated Polymer Solutions", AIChE J., 1969, 15, 177-183. https://doi.org/10.1002/aic.690150210
  41. R. B. Bird and P. J. Carreau, "A Nonlinear Viscoelastic Model for Polymer Solutions and Melts", Chem. Eng. Sci., 1968, 23, 427-434. https://doi.org/10.1016/0009-2509(68)87018-6
  42. I. F. Macdonald, "Large Amplitude Oscillatory Shear Flow of Viscoelastic Materials", Rheol. Acta, 1975, 14, 801-811. https://doi.org/10.1007/BF01521409
  43. G. Astarita and R. J. J. Jongschaap, "The Maximum Amplitude of Strain for the Validity of Linear Viscoelasticity", J. Non-Newt. Fluid Mech., 1977/1978, 3, 281-287. https://doi.org/10.1016/0377-0257(78)87005-0
  44. B. D. Coleman and W. Noll, "Foundations of Linear Viscoelasticity", Rev. Modern Phys., 1961, 33, 239-248. https://doi.org/10.1103/RevModPhys.33.239
  45. R. J. J. Jongschaap, K. H. Knapper, and J. S. Lopulissa, "On the Limit of Linear Viscoelastic Response in the Flow between Eccentric Rotating Disks", Polym. Eng. Sci., 1978, 18, 788-792. https://doi.org/10.1002/pen.760181009
  46. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615. https://doi.org/10.1122/1.549387
  47. J. L. Leblanc, "Investigating the Nonlinear Viscoelastic Behavior of Rubber Materials through Fourier Transform Rheometry", J. Appl. Polym. Sci., 2005, 95, 90-106. https://doi.org/10.1002/app.20798
  48. J. L. Leblanc, "Non-linear Viscoelastic Characterization of Natural Rubber Gum through Large Amplitude Harmonic Experiments", J. Rubber Res., 2007, 10, 63-88.

Cited by

  1. Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis vol.53, pp.5, 2016, https://doi.org/10.12772/TSE.2016.53.328
  2. Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids vol.53, pp.5, 2016, https://doi.org/10.12772/TSE.2016.53.317