DOI QR코드

DOI QR Code

캐비테이션 특성에 미치는 알루미늄 합금의 양극 산화 용액 온도의 영향

Effect of Solution Temperature for Al Alloy Anodizing on Cavitation Characteristics

  • 이승준 (군산대학교 동력기계시스템공학과) ;
  • 이정형 (목포해양대학교 기관시스템공학부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Lee, Seung-Jun (Department of Power System Engineering, Kunsan National University) ;
  • Lee, Jung-Hyung (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 투고 : 2015.06.10
  • 심사 : 2015.06.26
  • 발행 : 2015.06.30

초록

The commercialization of aluminum had been delayed than other metals because of its high oxygen affinity. Anodizing is a process in which oxide film is formed on the surface of a valve metal in an electrolyte solution by anodic oxidation reaction. Aluminum has thin oxide film on surface but the oxide film is inhomogeneous having a thickness only in the range of several nanometers. Anodizing process increases the thickness of the oxide film significantly. In this study, porous type oxide film was produced on the surface of aluminum in sulfuric acid as a function of electrolyte temperature, and the optimum condition were determined for anodizing film to exhibit excellent cavitation resistance in seawater environment. The result revealed that the oxide film formed at $10^{\circ}C$ represented the highest cavitation resistance, while the oxide film formed at $15^{\circ}C$ showed the lowest resistance to cavitation in spite of its high hardness.

키워드

참고문헌

  1. S. H. Han, Bull. Korean Inst. Met. Mater., 2, 102 (1989).
  2. J. E. Lewis and R. C. Plumb, J. Electrochem. Soc., 105, 498 (1958). https://doi.org/10.1149/1.2428909
  3. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, 411 (1953). https://doi.org/10.1149/1.2781142
  4. H. Masuda and K. Fukuda, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  5. H. Birey, J. Appl. Phys., 49, 2898 (1978). https://doi.org/10.1063/1.325174
  6. S. Ikonopisov, Electrochim. Acta, 22, 1077 (1977). https://doi.org/10.1016/0013-4686(77)80042-X
  7. N. Klein, V. Moskovici and V. Kadary, J. Electrochem. Soc., 127, 152 (1980). https://doi.org/10.1149/1.2129605
  8. F. Debuyck, M. Moors and A. P. Van Peteghem, Mater. Chem. Phys., 36, 146 (1993). https://doi.org/10.1016/0254-0584(93)90023-F
  9. S. Ono and N. Masuko, Surf. Coat. Technol., 169-170, 139 (2003). https://doi.org/10.1016/S0257-8972(03)00197-X
  10. A. L. Yerokin, A. Shatrov, V. Samsonov, P. Shahkov, A. pilkington, A. Leyland, and A. Matthews, Surf. Coat. Technol., 199, 150 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.147
  11. H. Tiltscher, H. Wolf, W. Jager and K. Dialer, Chem. Ing. Tech., 53, 363 (1981). https://doi.org/10.1002/cite.330530511
  12. E. K. Joo. Ph. D Thesis, p. 39, Kookmin University (2002).
  13. D. J. Stirland and R. W. Bicknell, J. Electrochem. Soc., 106, 481 (1959). https://doi.org/10.1149/1.2427392
  14. S. J. Kim and K. Y. Hyun, Corros. Sci. Tech., 11, 151 (2012). https://doi.org/10.14773/cst.2012.11.4.151
  15. W. C. Leith and A. L. Thomson, J. Basic Eng., 82, 795 (1960). https://doi.org/10.1115/1.3662761
  16. I. Hansson and K. A. Morch, J. Appl. Phys., 51, 4651 (1980). https://doi.org/10.1063/1.328335
  17. D. S. Won, K. S. Jeon, Y. T. Kho and J. H. Lee, J. Corros. Sci. Soc. of. Kor., 23, (1994).
  18. J. G. Auret, O. F. R. A. Domm, G. J. Wright and F. P. A. Robinson, Corrosion, 49, 910 (1993). https://doi.org/10.5006/1.3316017
  19. P. Csokan, Adv. Corros. Sci. Tech., 7, 239 (1980).
  20. S. M. Ahmed, K. Hokkirigawa, Y. Ito and R. Oba, Wear, 142, 303, (1991). https://doi.org/10.1016/0043-1648(91)90171-P
  21. M. K. Lee, S. M. Hong, G. H. Kim and C. K. Rhee, Korean J. Met. Mater., 44, 350 (2006).
  22. T. Okada, Y. Iwai, S. Hattori and N. Tanimura, Wear, 184, 231 (1995). https://doi.org/10.1016/0043-1648(94)06581-0
  23. H. G. Feller and Y. Kharrazi, Wear, 93, 249 (1984). https://doi.org/10.1016/0043-1648(84)90199-6

피인용 문헌

  1. Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater vol.49, pp.4, 2016, https://doi.org/10.5695/JKISE.2016.49.4.349
  2. Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution vol.19, pp.4, 2015, https://doi.org/10.14773/cst.2020.19.4.163