DOI QR코드

DOI QR Code

Gene expression in plant according to RNAi treatment of the tobacco whitefly

RNAi 기법으로 담배가루이 방제를 위해 선발된 유전자의 식물체내 발현

  • Kim, Jeong-Hee (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Seo, Eun-Young (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Jung-Kyu (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong-Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young-Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 김정희 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 서은영 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김정규 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 임현섭 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2015.06.16
  • Accepted : 2015.06.24
  • Published : 2015.06.30

Abstract

Three genes selected from cDNA library of tobacco whitefly, Bemisia tabaci, were checked whether these genes expressed in plant or not, and confirmed the change of gene expression using qRT-PCR in the tobacco whitefly. First of all, three genes were inserted in Tobacco rattle virus (TRV) RNA2 vector using Sac I and Xho I restriction enzymes, and conducted agro-infiltration in tobacco plants (Nicotiana benthamianana). And then, it was confirmed that TRV RNA2 vector and genes inserted in TRV RNA2 vector were expressed in plant. So, after feeding the tobacco whitefly the plants inoculated the genes and induced RNAi of the genes, we plan to confirm the RNAi in the whitefly and investigate the changes of gene expression through the qRT-PCR.

Keywords

References

  1. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25:1322-1326. https://doi.org/10.1038/nbt1359
  2. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG. 1994. Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 125:311-325. https://doi.org/10.1111/j.1744-7348.1994.tb04972.x
  3. Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS. 2012. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. Plos One 7: 10:e46343. https://doi.org/10.1371/journal.pone.0046343
  4. Burban C, Fishpool LDC, Fauquet C, Fargette D, Thouvenel JC. 1992. Host associated biotypes within West African population of the whitefly Bemisia tabaci (Genn.) (Hom. Aleyrodidae). Journal of Applied Entomology, 113:416-423. https://doi.org/10.1111/j.1439-0418.1992.tb00682.x
  5. Byrne DN. 1999. Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agricultural and Forest Meteorology, 97:309-316. https://doi.org/10.1016/S0168-1923(99)00074-X
  6. Choi GM. 1990. Ecology and control of vegetable insect pests. NIAST. pp. 224.
  7. Choi YM, Kim GH. 2004. Insecticidal activity of spearmint oil against Trialeurodes vaporariorum and Bemisia tabaci adults. Korean Journal of Applied Entomology, 43:323-328.
  8. Czosnek H, Ghanim M, Ghanim M. 2002. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci-insights from studies with Tomato yellow leaf curl virus. Annals of Applied Biology, 140:215-231. https://doi.org/10.1111/j.1744-7348.2002.tb00175.x
  9. Devine GJ, Denholm I. 1998. An unconventional use of piperonyl butoxide for managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 88:601-610. https://doi.org/10.1017/S0007485300054262
  10. Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR. 2007. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525-1533. https://doi.org/10.1007/s00425-007-0588-x
  11. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58:216-225. https://doi.org/10.1002/arch.20044
  12. Huvenne H, Smagghe G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology, 56:227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
  13. Jones DR. 2003. Plant viruses transmitted by whiteflies. EEuropean Journal of Plant Pathology, 109:195-219. https://doi.org/10.1023/A:1022846630513
  14. Karatolos N, Gorman K, Williamson MS, Denholm I. 2012. Mutations in the sodium channel associated with pyrethroid resistance in the greenhouse whitefly, Trialeurodes vaporariorum. Pest Management Science, 68:834-838. https://doi.org/10.1002/ps.2334
  15. Kim HY, Lee YH, Kim JH, Kim YH. 2008. Comparison on the Capability of Four Predatory Mites to Prey on the Eggs of Bemisia tabaci (Hemiptera: Aleyrodidae). Korean J. Appl. Entomol. 47:429-433 https://doi.org/10.5656/KSAE.2008.47.4.429
  16. Ko NY, Lim HS, Yu YM, Youn YN. 2015a. Construction of cDNA Library for Using Virus-induced Gene Silencing (VIGS) Vector with the Sweetpotato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Korean Journal of Applied Entomology, 54:91-97. https://doi.org/10.5656/KSAE.2015.04.0.004
  17. Ko NY, Youn YN. 2015. Change of population density of tobacco whitefly (Bemisia tabaci, Aleyrodidae, Hemiptera) by RNAi. CNU Journal of Agricultural Sciences, 42:7-13. https://doi.org/10.7744/cnujas.2015.42.1.007
  18. Lee H, Song W, Kwak HR, Kim JD, Park JG, Auh CK, Kim DH, Lee KY, Lee SC, Choi HS. 2010. Phylogenetic analysis and inflow route of tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Molecules and Cells, 30:467-476. https://doi.org/10.1007/s10059-010-0143-7
  19. Lee YS, Lee, SY, Park EC, Kim JH, Kim GH. 2002. Comparative Toxicities of Pyriproxyfen and Thiamethoxam against the Sweetpotato Whitefly, Bemisia tabaci (Homoptera:Aleyrodidae). Journal of Asia-Pacific Entomology, 5:117-122. https://doi.org/10.1016/S1226-8615(08)60140-5
  20. Liu Y, Schiff M, Dinesh‐Kumar SP. 2002. Virus-induced gene silencing in tomato. Plant Journal, 31:777-786. https://doi.org/10.1046/j.1365-313X.2002.01394.x
  21. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25:1307-1313. https://doi.org/10.1038/nbt1352
  22. Mutti NS, Park Y, Reese JC, Reeck GR. 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science, 6. no. 38:1-7 https://doi.org/10.1673/031.006.3801
  23. Nauen R, Stump N and Elbert A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q type Bemisia tabaci. Pest Management Sience, 58:868-875. https://doi.org/10.1002/ps.557
  24. Perring TM. 2001. The Bemisia tabaci species complex. Crop Protection, 20:739-765. https://doi.org/10.1016/S0261-2194(01)00117-X
  25. Rangasamy M, Siegfried BD. 2012. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Management Sience, 68:587-591. https://doi.org/10.1002/ps.2301
  26. Sapountzis P, Duport G, Balman S, Gaget K, Jaubert-Possamai S, Febvay G, Charles H, Rahbe Y, Colella S, Calevro F. 2014. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments. Insect Biochemistry and Molecular Biology, 51:20-32. https://doi.org/10.1016/j.ibmb.2014.05.005
  27. Whyard S, Singh AD, Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39:824-832. https://doi.org/10.1016/j.ibmb.2009.09.007
  28. Wynant N, Santos D, Van Wielendaele P, Vanden Broeck J. 2014. Scavenger receptor‐mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Molecular Biology, 23:320-329.
  29. Yoon YJ, Yu YM, Lee MH, Han EJ, Hong SJ, Ahn NH, Kim YK, Jee HJ, Park JH. 2010. Characterization of Lecanicillium lecanii Btab0l isolated with bioactivities to tobacco whitefly (Bemisia tabaci). Korean Journal of Applied Entomology, 49:417-422. https://doi.org/10.5656/KSAE.2010.49.4.417

Cited by

  1. Comparing the susceptibilities of green peach aphid populations against several insecticides vol.44, pp.3, 2015, https://doi.org/10.7744/kjoas.20170032
  2. Control effects of 20 chemical insecticides and new strains of Bacillus thuringiensis against the fungus gnat (Bradysia difformis, Sciaridae, Diptera) vol.45, pp.2, 2018, https://doi.org/10.7744/kjoas.20180028