DOI QR코드

DOI QR Code

Methane Dry Reforming over Ru/CeO2 catalysts

Ru/CeO2 촉매를 이용한 메탄 건식 개질

  • HIEN, NGUYEN THI BICH (Clean Energy and Chemical Engineering, Korea University of Science and Technology) ;
  • JEON, MINA (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • RIDWAN, MUHAMMAD (Clean Energy and Chemical Engineering, Korea University of Science and Technology) ;
  • TAMARANY, RIZCKY (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • YOON, CHANG WON (Clean Energy and Chemical Engineering, Korea University of Science and Technology)
  • 뉴옌 히엔 (청정연료 화학공학 한국과학기술연합대학원대학교) ;
  • 전미나 (연료전지연구센터 한국과학기술연구원) ;
  • 무하마드 리드완 (청정연료 화학공학 한국과학기술연합대학원대학교) ;
  • 리즈키 타마라니 (연료전지연구센터 한국과학기술연구원) ;
  • 윤창원 (청정연료 화학공학 한국과학기술연합대학원대학교)
  • Received : 2015.06.25
  • Accepted : 2015.06.30
  • Published : 2015.06.30

Abstract

Ru catalysts supported on $CeO_2$ were synthesized by an impregnation method and characterized by numerous analytical techniques including X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Upon utilization of these catalysts for methane dry reforming with a $CH_4/CO_2$ ratio of 1:1 at different temperatures ranging from 550 to $750^{\circ}C$, the $Ru/CeO_2$ catalysts have shown to be active. In particular, Ru(0.55wt%) supported on $CeO_2$ (1) prepared by a hydrothermal method exhibited excellent activity with the conversion of > 75% at $750^{\circ}C$. In addition, the catalyst also proved to be highly stable for at least 47 h without catalyst deactivation under the dry reforming conditions.

Keywords

References

  1. L. B. Braga, J. L. Silveira, M. E. da Silva, C. E. Tuna, E. B. Machin, and D. T. Pedroso "Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis", Renewable and Sustainable Energy Review Vol. 28, 2013, p. 166. https://doi.org/10.1016/j.rser.2013.07.060
  2. J. Xu, W. Zhou, Z. Li, J. Wang, and J. Ma. Biogas reforming for hydrogen production overa Ni-Co bmetallic catalyst: Effect of operating conditions. International Journal of Hydrogen Energy, Vol 35, 2010, pp. 13013-13020. https://doi.org/10.1016/j.ijhydene.2010.04.075
  3. J. Xua, W. Zhou, Z. Li, J. Wang, and J. Ma, "Biogas reforming for hydrogen production overnickel and cobalt bimetallic catalysts", International Journal of Hydrogen Energy, Vol. 34, 2009, p. 6646. https://doi.org/10.1016/j.ijhydene.2009.06.038
  4. A. L. Dicks, "Advances in catalysts for internal reforming in high temperature fuel cell" Journal of Power Sources, Vol. 71, 1998, p. 111. https://doi.org/10.1016/S0378-7753(97)02753-5
  5. S. P. Jiang, and S. H. Chan, "A review of anode materials development in solid oxide fuel cells" Journal of Materials Chemistry, Vol. 39, 2004, p. 4405.
  6. J. Zhu, X. Peng, L. Yao, D. Tong, and C. Hu, "$CO_2$ of methane over Mg-promoted Ni/$SiO_2$: the influence of Mg precursors and impregnation sequences" Catalysis Science & Technology, Vol. 2, 2012, p.529. https://doi.org/10.1039/C1CY00333J
  7. D. Qin, and J. Lapszewicz. "Study of mixed steam and $CO_2$ reforming of $CH_4$ to syngas on MgOsupported metal", Catalysis Today, Vol. 21, 1994, p. 551. https://doi.org/10.1016/0920-5861(94)80179-7
  8. U. Hennings, and R. Reimert. "Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel cell applications", Applied Catalysis B, Vol. 70, 2007, p. 498. https://doi.org/10.1016/j.apcatb.2006.01.024
  9. E. I. Kauppi, R. K. Kaila, J. A. Linnekoski, A. O. I. Krause, and M. K. Veringa-Niemela, "Temperature- programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane", International Journal of Hydrogen Energy, Vol. 35, 2010, p. 7759. https://doi.org/10.1016/j.ijhydene.2010.05.046
  10. D. L. Trimm, "Catalysts for the control of coking during steam reforming", Catalysis Today, Vol. 49, 1999, p. 3. https://doi.org/10.1016/S0920-5861(98)00401-5
  11. C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, and J. Cejka, "Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas", Catalyst Rev Vol. 50, No. 2, 2008, p. 222. https://doi.org/10.1080/01614940701804042
  12. K. Nagaoka, K. Seshan, K. Aika, and J. A. Lercher. "Carbon Deposition during Carbon Dioxide Reforming of Methane-Comparison between $Pt/Al_2O_3$ and Pt/$ZrO_2$" Journal of Catalysis, Vol. 197, 2001, p. 34. https://doi.org/10.1006/jcat.2000.3062
  13. X. Wang, and R. J. Gorte, "Steam reforming of n-butane on Pd/ceria", Catalyst Letter, Vol. 73, No. 1, 2001, p. 15. https://doi.org/10.1023/A:1009070118377
  14. D. Harshini , D. H. Lee, J. Jeong, Y. Kim, S. W. Nam, H. C. Ham, J. H. Han, T.-H. Lim, and C. W. Yoon, "Enhanced oxygen storage capacity of $Ce_{0.65}Hf_{0.25}M_{0.1}O_{2-{\delta}}$ (M = rare earth elements): Applications to methane steam reforming with high coking resistance", Applied Catalysis B, Vol. 148-149, 2014, p. 415. https://doi.org/10.1016/j.apcatb.2013.11.022
  15. Y. Kim, J.H. Kim, J. Bae, C.W. Yoon, and S.W. Nam, "In Situ Analyses of Carbon Dissolution into Ni-YSZ Anode Materials", J. Phys. Chem. C, Vol. 116, No. 24, 2012, p. 13281. https://doi.org/10.1021/jp3035693
  16. D. C. Carvalho, H. S. A. de Souza, J. M. Filho, A. C. Oliveira, A. Campos, E. R. C. Milet, F. F. de Sousa, E. Padron-Hernandez, and A. C. Oliveira "A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru", Applied Catalysis A, Vol. 473, 2014 p. 132. https://doi.org/10.1016/j.apcata.2013.12.031
  17. J. Xu, Z. Luan, H. He, W. Zhou, and L. Kevan, "A Reliable Synthesis of Cubic Mesoporous MCM-48 Molecular Sieve" Chemistry of Matererials, Vol 10, No. 11, 1998, p. 3690. https://doi.org/10.1021/cm980440d