• Title/Summary/Keyword: 루테늄

Search Result 114, Processing Time 0.027 seconds

Extraction and Separation of Ruthenium(III) from Hydrochloric Acid Solution Using TBP and Cyanex923 (염산용액(鹽酸溶液)에서 TBP 및 Cyanex923을 이용(利用)한 루테늄(III)의 유출(抽出).분리(分離)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.60-66
    • /
    • 2011
  • Solvent extraction experiments were carried out to recover and separate Ru(III) from aqueous hydrochloric acid media using TBP and Cyanex923. The efficiency of the extraction was studied under various experimental conditions, such as concentration of HCl and NaCl, concentration of extractant in the organic phase and temperature. The extraction behavior of metal impurities, such as Pt, Bi, Sn, Fe, Pb and Cu in mixed solutions was examined. From the experimental studies, it was found that the Cyanex923 resulted in higher extraction percentage of Ru than TBP. However TBP was more effective for the separation of Ru and Pt, Bi, Sn in mixed solutions than Cyanex923.

Sorption of Radioactive Cobalt and Ruthenium on Soil Minerals (방사성 코발트 및 루테늄의 토양 흡착)

  • Lee, Byung-Hun;Hands, J.D.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.7-16
    • /
    • 1990
  • The sorption of radioactive cobalt and ruthenium on alumina, silica gel, zeolite 3A, kaolin and Na-bentonite has been studied as a function of pH. nuclide concentration and ionic strength. Retardation factor for cobalt and ruthenium on soil minerals was determined through porosity measurement. Hydrolysed species, cobalt and ruthenium interact with solid surfaces by physical adsorption processes. Freundlich sorption isotherms for cobalt and ruthenium are effectively linear. The sorption decreases with increasing ionic strength for cobalt and ruthenium. The effect of increasing porosity on the retardation factor countered the effect of a significant increase in the distribution coefficient.

  • PDF

수산화인회석 표면에 도입된 루테늄 나노 입자를 활용한 촉매 활성 연구

  • Lee, Yun-Hui;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.164.2-164.2
    • /
    • 2016
  • 수산화인회석(Hydroxyapatite)는 뼈와 이빨의 무기물의 주성분으로서 칼슘과 인산염으로 구성된다. 본 연구에서는 특정 농도의 염기조건 (10 M NaOH)에서 수열합성법 (hydrothermal method)을 이용하여 수산 화인회석을 합성하였다. 합성된 샘플은 XRD 패턴 및 TEM 이미지 분석을 통하여 단결정성과 일정한 형태를 지닌 수산화인회석이 합성된 것을 확인하였다. 수산화인회석의 표면에 루테늄을 도입하기 위하여 이온교환 반응 과 열처리 과정을 이용하였다. 도입된 루테늄 나노 입자는 TEM 이미지 분석을 통하여 확인하였으며, 일차알콜과 이차알콜등의 유기 산화반응에 촉매로서 사용하였다.

  • PDF

Leaching of Ruthenium by Electro-generated Chlorine Gas by Electrochemical Method (전기화학법(電氣化學法)에 의해 생성(生成)된 전해생성(電解生成) 염소(鹽素)를 이용한 루테늄의 침출(浸出))

  • Ahn, Jong-Gwan;Lee, Ah-Rum;Kim, Min-Seuk;Ahn, Jae-Woo;Lee, Jae-Ryeoung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, a electrochemical-chemical combined dissolution technology was conducted by electro-generated chlorine to obtain ruthenium solution from ruthenium metal. To find out the optimum leaching conditions of ruthenium in chloride solution, this leaching process was carried out on the variation of pH, reaction time, temperature and applied voltage at the electro-generated chlorine system in the reaction bath. Also, ozone generator was used to obtain ruthenium(III) chloride solution to increase the leaching rate. The optimum condition was observed at pH 10.0, $40^{\circ}C$ within 1 hr of reaction time that more than 88% of ruthenium(III) chloride dissolved.

Cation Exchange Separation and Determination of Ruthenium in a Simulated Spent Nuclear Fuel (모의 사용후핵연료에 함유된 루테늄의 양이온교환 분리 및 정량)

  • Suh, Moo-Yul;Sohn, Se-Chul;Lee, Chang-Heon;Choi, Kwang-Soon;Kim, Do-Yang;Park, Yeong-Jae;Park, Kyoung-Kyun;Jee, Kwang-Yong;Kim, Won-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.526-532
    • /
    • 2000
  • Cation exchange separation and inductively coupled plasma atomic emission spectrometric(ICP-AES) determination of ruthenium in HCl solutions were studied to quantitatively determine ruthenium in spent nuclear fuels. Ruthenium-bearing samples were dissolved with the mixed acid solution(9 : 1 mole ratio, HCl-HNO$_3$) using an acid digestion bomb. Based on the absorption spectra and ion exchange behaviour of ruthenium in hydrochloric acid media, its possible chemical species were discussed. On a cation exchange column (0.7 ${\times}$ 8.0 cm) packed with AG 50W ${\times}$ 8(100~200 mesh) and equilibrated with 0.5 M HCl, ruthenium was eluated with 0.5 M HCl while uranium was retained on the column. The established separation method was applied to a simulated spent nuclear fuel and resulted in the recovery of 98.5% with a relative standard deviation of 0.7%.

  • PDF

Technology for the Recovery of Os and Ru from Primary/Secondary Resources (1차(次)/2차(次) 자원(資源)으로부터 Os과 Ru 회수기술(回收技術))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.3-11
    • /
    • 2012
  • Some methods used for the recovery of osmium and ruthenium from primary/secondary sources are reviewed. Both Ru and Os could form volatile oxides which enable their separation from the other PGMs by distillation as a traditional method. In hydrochloric acid solution, they also form chloro-complexes with different valence states. Amines or amine based mixture have been used to extract Ru. Solvating extractants are employed to separate Ru and Os. The detailed extraction and stripping conditions of several solvent extraction processes have been reviewed. As an alternative to solvent extraction, solid-liquid method can be applied to recover trace amount of these metals.

산화루테늄(RuO2) 제조기술

  • 이강명;이기웅;정경원
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.281-283
    • /
    • 1996
  • 전자제품의 경박 단소화에 필수 부품인 칩저항기, HIC 등의 제조 기술은 급속한 성장을 이룬 반면에 가장 중요한 특성을 발현하는 전극 재료 및 저항 재료의 제조는 기술적으로 취약한 부분이다. RuO2와 Pb2Ru2O5.5는 저항 페이스트의 가장 중요한 원재료로서 저항 편차, 온도저항계수(TCR), 전압저항계수(VCR), NOISE 등의 전기적 특성과 페이스트이 흐름성, 보존 안정성 등의 작업성에 큰 영향을 미친다. 외국에서 산화 루테늄 분말 제조에 대한 많은 연구가 진행되어 오고 있으나 대부분 출발 물질을 염화 루테늄을 사용하여 RuO2 분말을 제조하고 있다. 이렇게 제조된 RuO2 분말은 전자 재료에 악영향을 미치는 염소이온이 잔류할 가능성이 높다. 본 연구에서는 Ru metal에서 루테늄산염을 만들어 위의 문제를 최소화 하였고, 전기적 특성이 우수한 고분산 초미립의 RuO2를 얻기 위해 산화, 환원, 정제, 배소 등의 제조 공정에 있어서 최적 조건을 고찰 하였다.

  • PDF

Electrochemical behavior and Application of Ruthenium-Cupferron Complex (루테늄-쿠페론의 전기화학적 행동 및 응용)

  • Kwon, Young-Soon;Park, So-Young
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.464-469
    • /
    • 2004
  • Cyclic voltammetry was used for elucidating the electrochemical behavior of Ru-cupferron complex in 1 mM phosphate buffer. The optimal conditions of ruthenium were found to be 1 mM phosphate buffer solution (pH 6.0) containing 0.1 mM cupferron, scan rate of 100 mV/s. By using the plot on the reduction peak currents of linear scan voltammograms vs. ruthenium concentration, the detection limit ($3{\sigma}$) was $1.2{\times}10^{-7}M$.

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF

Synthesis and Oxidative Catalytic Property of Ruthenium-doped Titanate Nanosheets (루테늄이 도입된 티타네이트 나노시트의 합성 및 산화 촉매 활성 연구)

  • Lee, Yoonhee;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.593-596
    • /
    • 2017
  • Sodium titanate nanosheets were prepared by a hydrothermal synthesis method under basic conditions. Ruthenium was introduced on the surface of sodium titanate nanosheets through an UV irradiation in the aqueous $RuCl_3$ solution. The crystal phase and morphology of synthesized samples were analyzed by X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. In addition, the content of Ru was evaluated by inductively coupled plasma. It was proposed that a monomeric form of ruthenium was incorporated on the surface of sodium titanate. Ruthenium incorporated sodium titanates were applied to alcohol oxidation using molecular oxygen as an oxidant. The sample with 7% ruthenium showed a catalytic activity with a turnover frequency value of $2.1h^{-1}$ in oxidizing benzyl alcohol to benzaldehyde without any other byproducts at $105^{\circ}C$ and 1 atmosphere.