DOI QR코드

DOI QR Code

UV-B 반복노출에 따른 항산화효소의 변성 및 활성저하와 RGP렌즈의 차단효과

Denaturation and Inactivation of Antioxidative Enzymes due to Repeated Exposure to UV-B and Inhibitory Effect of RGP Lens

  • 변현영 (서울과학기술대학교 안경광학과) ;
  • 이은정 (서울과학기술대학교 안경광학과) ;
  • 오대환 (서울과학기술대학교 안경광학과) ;
  • 김소라 (서울과학기술대학교 안경광학과) ;
  • 박미정 (서울과학기술대학교 안경광학과)
  • Byun, Hyun Young (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Lee, Eun Jung (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Oh, Dae Hwan (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2015.04.27
  • 심사 : 2015.05.23
  • 발행 : 2015.06.30

초록

목적: 본 연구는 안구에 존재하는 항산화효소인 superoxide dismutase(SOD)와 catalase(CAT)가 UV-B에 반복적으로 노출되었을 때 유발되는 구조변성 및 활성저하의 상관관계를 밝히며, 자외선 차단 RGP렌즈의 사용으로 효소의 변성과 활성저하가 효율적으로 차단되는가를 알아보기 위하여 수행되었다. 방법: SOD와 CAT의 표준품으로 각각의 효소용액을 제조하고 하루 30분, 1시간 및 2시간씩 312 nm의 UV-B에 1, 2, 3, 4 및 5일 동안 반복적으로 노출시켰다. 이 때 UV-B에 직접 노출시킨 항산화효소의 구조 및 활성변화를 자외선 차단기능이 있는 RGP렌즈로 UV-B를 차단시킨 경우와 비교하였다. UV-B 반복노출에 따른 SOD와 CAT의 구조변성은 전기영동분석으로 확인하였으며, 이들 효소활성은 분석키트를 이용하여 비색분석법으로 측정하였다. 결과: UV-B에 반복노출된 SOD는 일일 30분 조사조건으로 반복노출되었을 때에도 전기영동분석에서 효소다중화(polymerization)가 관찰되었으나 활성의 변화는 10% 이내로 나타났다. 반면 UV-B에 반복노출된 CAT은 전기영동 시 효소밴드크기나 진하기가 감소하여 구조변성이 나타났음을 확인할 수 있었으며, 반복노출시간이 긴 경우 CAT은 전기영동분석에서 효소밴드를 보임에도 불구하고 그 활성은 완전히 소실되었다. 또한 UV-B 조사로 인한 CAT의 변성은 63.7%의 UV-B 차단기능을 가진 RGP렌즈의 사용으로 어느 정도 억제되었으나 완전히 억제되는 것은 아니었다. 결론: 이상의 결과로 UV-B 반복노출에 따른 항산화효소의 구조변성은 그 종류에 따라 효소활성의 감소정도와 반드시 일치하는 것은 아님을 알 수 있었다. 따라서 자외선으로 인한 항산화효소의 손상을 막기 위하여서는 콘택트렌즈를 착용한 상태에서 자외선 노출시간을 최소화하거나, FDA Class I 차단제에 해당하는 UV 차단율을 가지는 콘택트렌즈를 착용 또는 이에 상응하는 UV차단율을 가지는 선글라스를 덧착용할 것을 권장한다.

Purpose: The present study was conducted to reveal the correlation of structural denaturation and decrease of enzyme activity when the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT) were repeatedly exposed to UV-B, and further investigate whether the denaturation and inactivation of those enzymes can be effectively blocked by using UV-inhibitory RGP lens. Methods: Each enzyme solution was prepared from the standardized SOD and CAT, and repeatedly exposed to UV-B of 312 nm for 30 minutes, 1 hour and 2 hours a day over 1, 2, 3, 4 and 5 days. Structural denaturation of SOD and CAT induced by repeat UV-B irradiation was confirmed by the electrophoretic analysis, and their enzyme activity was determined by the colorimetric assay using the proper assay kit. At that time, the change in structure and activity of the antioxidant enzymes directly exposed to UV-B was compared to the case that UV-B was blocked by UV-inhibitory RGP lens. Results: SOD exposed repeatedly to UV-B showed the polymerization pattern in the electrophoretic analysis when it repeatedly exposed for 30 min a day, however, the change of its activity was less than 10%. On the other hand, CAT repeatedly exposed to UV-B reduced size and density of the electrophoretic band which indicated a structure denaturation, and its activity was significantly decreased. In the case that the repeat exposure time was longer, CAT activity was completely lost even though some enzyme band occurred in the electrphoretic analysis. In addition, the degeneration of CAT due to UV-B irradiation was inhibited to some extent by using RGP lens with a UV-B blocking of 63.7%, however, it was not completely inhibited. Conclusions: From these results, it was revealed that the structural denaturation of antioxidative enzymes was not perfectly correlated with the reduction in enzyme activity according to the type of enzyme. It is recommended to minimize the exposure time to UV when wearing contact lens, or wear the contact lenses having UV blocking rate of the FDA Class I blocker or the sunglasses having equivalent UV-blocking rate for reducing the damage of antioxidative enzymes induced by UV.

키워드

참고문헌

  1. ICNIRP (International Commission on Non-Ionizing Radiation Protection). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 and 400 nm (incoherent optical radiation). Health Phys. 1994;87(2):171-186. https://doi.org/10.1097/00004032-200408000-00006
  2. Zigman S. Ocular light damage. Photochem Photobiol. 1993;57(6):1060-1068. https://doi.org/10.1111/j.1751-1097.1993.tb02972.x
  3. Youn HY, McCanna DJ, Sivak JG, Jones LW. In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol Vis. 2011;17(1):237-246.
  4. Merriam JC, Lofgren S, Michael R, Soderberg P, Dillon J, Zheng L et al. An action spectrum for UV-B radiation and the rat lens. Invest Ophthalmol Vis Sci. 2000;41(9):2642-2647.
  5. Rose RC, Richer SP, Bode AM. Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med. 1998;217(4):397-407. https://doi.org/10.3181/00379727-217-44250
  6. Reddy VN, Kasahara E, Hiraoka M, Lin LR, Ho YS. Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium. Exp Eye Res. 2004;79(6):859-868. https://doi.org/10.1016/j.exer.2004.04.005
  7. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. J Assoc Physicians India. 2004;52:794-804.
  8. Melov S. Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann NY Acad Sci. 2002;959:330-340. https://doi.org/10.1111/j.1749-6632.2002.tb02104.x
  9. Babizhayev MA. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Cell Biochem Funct. 2011;29(3):183-206. https://doi.org/10.1002/cbf.1737
  10. Mittag T. Role of oxygen radicals in ocular inflammation and cellular damage. Exp Eye Res. 1984;39(6):759-769. https://doi.org/10.1016/0014-4835(84)90075-7
  11. Hong NS, Ko SM, Shyn KH. The effect of UVB radiation on the cultured rabbit lens epithelial cells. J Korean Ophthalmol Soc. 1997;38(1):46-56.
  12. Cejkova J, Stipek S, Crkovska J, Ardan T, Platenik J, Cejka C et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 2004;53:1-10.
  13. Cejkova J, Stipek S, Crkovska J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol Histopathol 2000;15(4):1043-1050.
  14. Formicki G, Stawarz R. Ultraviolet influence on catalase activity and mineral content in eyeballs of gibel carp. Science Total Environ. 2006;369(1-3):447-450. https://doi.org/10.1016/j.scitotenv.2006.07.021
  15. Kim SR, Lee JH, Choi JI, Park M. The inhibitory UV-B blocking rate of eyeglasses lens on the enzymes denaturation in cornea. J Korean Ophthalmic Opt Soc. 2013;18(3):253-260. https://doi.org/10.14479/jkoos.2013.18.3.253
  16. Park CS, Park YM, Kim DH, Park M. The effect of UV blocking lens on the denaturation of antioxidative enzymes induced by UV-A. J Korean Ophthalmic Opt Soc. 2007;12(3):97-103.
  17. Park M, Lee KH, Lee EK, Park SH, Kim SR, Lee HS. Effects of UV-A blocking contact lenses on the enzymes denaturation induced by UV-A irradiation. J Korean Ophthalmic Opt Soc. 2008;13(4):43-49.
  18. Park M, Yoo HJ, Kim JC, Kim SR. The relationship between structural denaturation of antioxidative enzymes and their enzyme activity due to repeated exposure to UVA. J Korean Ophthalmic Opt Soc. 2015;20(1):75-81. https://doi.org/10.14479/jkoos.2015.20.1.75
  19. American National Standards Institute (ANSI). American National Standard Requirements for Non-Prescription Sunglasses and Fashion Eyewear, Z80.3. New York: ANSI, 1996.
  20. American Optometric Association. UV Protection with Contact Lenses. http://www.aoa.org/patients-and-public/caring-for-your-vision/uv-protection/uv-protection-withcontact-lenses?sso=y(20 March, 2015).
  21. Yu DS. Yoo JS. Evaluation of ultraviolet blocking of ophthalmic lenses. J Korean Ophthalmic Opt Soc. 2008;13(3):7-12.
  22. Sigma-Aldrich Co. Production information: superoxide dismutase from bovine erythrocyte. http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/5/s7446dat.pdf (13 May, 2014).
  23. Sigma-Aldrich Co. Production information: catalase from bovine liver. http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/c40pis.pdf(13 May, 2014).

피인용 문헌

  1. 시력교정용 안경렌즈의 융복합적 기술개발을 위한 UV차단 성능 평가 vol.9, pp.4, 2015, https://doi.org/10.15207/jkcs.2018.9.4.093