DOI QR코드

DOI QR Code

Effects of Specimen Size and Side-groove on the Results of J-R Fracture Toughness Test for LBB Evaluation

LBB 평가를 위한 J-R 파괴인성시험 결과에 미치는 시편 형상과 측면 홈의 영향

  • 김진원 (조선대학교 원자력공학과) ;
  • 최명락 (조선대학교 원자력공학과) ;
  • 오영진 (한국전력기술(주) 미래전력기술연구소) ;
  • 박흥배 (한국전력기술(주) 미래전력기술연구소) ;
  • 김경수 (한국전력기술(주) 미래전력기술연구소)
  • Received : 2014.11.06
  • Accepted : 2015.05.01
  • Published : 2015.07.01

Abstract

In this study, the effects of specimen size and side-groove on the results of the J-R test for leak-before-break (LBB) evaluation were investigated. A series of J-R tests were conducted at both RT and $316^{\circ}C$, using three different sizes of compact tension (CT) specimens machined from SA508 Gr.1a piping material: 12.7 mm-thick 1T-CT, 25.4 mm-thick 1T-CT, and 25.4 mm-thick 2T-CT with and without side-groove. The results showed that side-grooving reduced the J-R curve for all specimens and the effect of side-grooving was more significant at $316^{\circ}C$ than at RT. As the thickness of the specimens decreased and the width of the specimens increased, the J-R curve slightly decreased at RT but it increased at $316^{\circ}C$. However, the variation in the J-R curve of SA508 Gr.1a with the thickness and width of CT specimen was insignificant.

본 논문에서는 파단전누설 평가를 위한 J-R 파괴인성시험에 미치는 시편 크기와 측면 홈의 영향을 분석하였다. 이를 위해서 SA508 Gr.1a 배관재에서 채취된 측면 홈이 가공되거나 가공되지 않은 크기가 다른 3종류의 CT 시편(12.7mm 두께의 1T-CT, 25.4mm 두께의 1T-CT, 25.4mm 두께의 2T-CT)을 이용하여 상온과 $316^{\circ}C$에서 J-R 시험을 수행하였다. 시험 결과, 시편 두께에 관계없이 측면 홈이 가공된 시편은 측면 홈이 없는 시편에 비해 낮은 J-R 곡선을 보였으며, 상온에 비해 $316^{\circ}C$에서 측면 홈의 영향이 더욱 뚜렷하였다. 상온에서는 시편의 두께가 감소하고 폭이 증가함에 따라 J-R 곡선이 약간씩 감소하는 경향을 보였으나, $316^{\circ}C$에서는 시편의 두께가 감소하고 폭이 증가됨에 따라 J-R 곡선이 증가하였다. 그러나 SA508 Gr.1a 배관재에서 전체적으로 시편의 폭과 두께에 따른 J-R 곡선의 변화는 크지 않았다.

Keywords

References

  1. USNRC, Standard Review Plan 3.6.3 Leak-Before-Break Evaluation Procedures, NUREG-0800.
  2. EPRI, 1989, Lead Plant Application of Leak-Before-Break to High Energy Piping, NSAC-141.
  3. USNRC, 1984, Evaluation of Potential for Pipe Breaks, NUREG-1061, Vol.3.
  4. Lee, B.S., Oh, Y.J., Yoon, J.H., Kuk, I.H. and Hong, J.H., 2000, "J-R Fracture Properties of SA508-1a Ferritic Steels and SA312-TP347 Austenitic Steels for Pressurized Water Reactor's (PWR) Primary Coolant Piping," Nucl. Eng. & Design, Vol.199, pp.113-123. https://doi.org/10.1016/S0029-5493(99)00061-8
  5. Kim, K.C., Kim, J.T., Suk, J.I., Sung, U.H. and Kwon, H.K., 2004, "Influences of the Dynamic Strain Aging on the J-R Fracture Characteristics of the Ferritic Steels for Reactor Coolant Piping System," Nucl. Eng. & Design, Vol. 228, pp. 151-159. https://doi.org/10.1016/j.nucengdes.2003.06.014
  6. ASTM, 2009, "Standard Test for Measurement of Fracture Toughness," ASTM E1820-09.
  7. ASTM, 2009, "Standard Test Methods for Tension Testing on Metallic Materials," ASTM E8/E8M-09.
  8. Dietzel, W. and Schwalbe, K.H., 1986, "Monitoring Stable Crack Growth Using a Combined a.c./d.c. Potential Drop Technique," Materialrufung, Vol. 28, pp. 368-372.
  9. ISO, 2002, "Metallic Materials-Unified Method of Test for the Determination of Quasi-static Fracture Toughness," ISO-12135.
  10. Johnson, H.H., 1965, "Calibrating the Electric Potential Method for the Studying Slow Crack Growth," Mater. Res. & Stand., Vol. 5, pp. 442-445.
  11. Yasufumi, I. and Tomokazu, M., 1982, "Effect of Side Grooves on the Elastic-plastic Stress State of Fracture Toughness Specimens ‑ Three-dimensional Finite Element Analysis," Eng. Frac. Mech., Vol. 16, pp. 659-668. https://doi.org/10.1016/0013-7944(82)90019-4
  12. USNRC, 1986, Prediction of J-R Curves With Large Crack Growth From Small Specimen Data, NUREG/CR-4575, BMI-2137.
  13. Ono, H., Kasada, R. and Kimura, A., 2004, "Specimen Size Effects on Fracture Toughness of JLF-1 Reduced-activation Ferrite Steel," J. Nucl. Mater., Vol. 329-333, pp. 1117-1121. https://doi.org/10.1016/j.jnucmat.2004.04.034
  14. Schwalbe, K.H., Newman J.C. Jr, and Shannon J.L, Jr, 2005, "Frcature Mechanics Testing on Specimens with Low Constraint - Standardization Activities Within ISO and ASTM," Eng. Frac. Mech., Vol.72, pp. 557-576. https://doi.org/10.1016/j.engfracmech.2004.04.006
  15. Seok, C.S. and Kim, S.Y., 2002, "Effect of Specimen Configurations on the Fracture Resistance Curve," Nucl. Eng. & Design, Vol. 214, pp. 47-56. https://doi.org/10.1016/S0029-5493(02)00014-6