DOI QR코드

DOI QR Code

A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method

열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발

  • Received : 2014.11.03
  • Accepted : 2015.05.19
  • Published : 2015.07.01

Abstract

The mechanical components for wind turbines are mainly manufactured using open-die forging. This research introduces an advanced forging method to produce the door frame of the tubular wind turbine tower. The advantages of this new forging method are an increase in the raw material utilization ratio and a reduction in energy cost. In the conventional method, the door frame is hot forged with a hydraulic press and amounts of material are machined out because of the shape difference between the forged and final machine products. The proposed forging method is composed of hot forging and ring rolling processes to increase the material utilization ratio. The effectiveness of this new forging method is deeply related to the ring rolled blank dimension before the final forging. To get the optimal ring rolled blank, forged shape prediction using the finite element analysis method was applied. The forged dimensions produced by the new forging method were verified through the first article production.

풍력 발전기용 기계부품은 주로 자유단조 공법을 통하여 제조된다. 본 연구는 풍력발전기용 타워부품인 도아프레임의 제조하기 위한 발전된 단조공법에 관한 연구이다. 개발된 단조공법의 장점은 원소재 회수율을 높임에 따라 원소재 투입량을 줄임으로 제조원가를 낮춘다. 기존의 단조공업은 유압프레스를 이용하여 단조작업이 이루어지며 최종제품과 단조품의 형상 차이로인하여 많은 부분이 가공으로 제거된다. 하지만 제안된 단조공법은 열간 자유단조와 링롤링공법을 통하여 원소재 회수율을 높이게 된다. 새로운 공법의 유효성은 링롤링 블랭크의 치수와 밀접한 관련이 있기 때문에 유한요소해석을 통하여 블랭크의 치수를 최적화 하였다. 유한요소해석을 통하여 얻은 단조품의 치수는 시제품 생산을 통하여 검증하였다.

Keywords

References

  1. Manwell, J.F. and Rogers, A.L., 2002, Wind Energy Explained : Theory, Design and Application, John Wiley & Sons LTD, pp. 308-313.
  2. Dudra, S.P. and Im, Y.T., 1990, "Investigation of Metal Flow in Open-die Forging with Different Die and Billet Geometries," J. Mater. Process. Technol., Vol. 21, No. 2, pp. 143-154. https://doi.org/10.1016/0924-0136(90)90003-D
  3. Choi, S.K., Chun, M.S. and Van Tyne, C.J., 2006, "Optimization of Open Die Forging of Round Shapes Using FEM Analysis," J. Mater. Process. Technol., Vol. 172, No. 1, pp. 88-95. https://doi.org/10.1016/j.jmatprotec.2005.09.010
  4. Kim, D.Y., Kim, Y.D., Kim, D.K. and Kim, J.D., 2003, "A Study on the Open Die Forging Preform Shape of Crank Throw for Large Ship Engines," Proc. Kor. Soc. Tech. Plast. Conf., pp. 191-194.
  5. Choi, S.K., Kim, W.T., Chun, M.S. and Moon, Y.H., 2003, "Effect of Process Parameters on Cylindrical Open Die Forging," Proc. Kor. Soc. Tech. Plast. Conf., pp. 221-224.
  6. Knap, M., Kugler, G. and Palkowski, H., 2004, "Prediction of Material Spreading in Hot Open-Die Forging," Steelres. int., Vol. 75, No. 6, pp. 405-410. https://doi.org/10.1002/srin.200405787
  7. Tamura, K., Akiyama, M. and Tajima, J., 2005, "Optimization of Anvil Design for Ensuring Dimensional Precision of Forged Round Billet Without Forging Defects by Three-dimensional Rigid-plastic Finite Element Analysis," J. Eng. Sci., Vol 219,pp. 461-475.
  8. Tamura, K. and Tajima, J., 2004, "Optimization of Open-die Forging Process Design to Ensure Homogeneous Grain Size Refinement of Cast Structures by Three-dimensional Rigid-plastic Finite Element Analysis," J. Mech. Eng. Sci., Vol. 218, No. 9, pp. 931-946. https://doi.org/10.1243/0954406041991305
  9. Lee, Y.S. and Kwon, Y.C., 2007, "Analysis on Void Closure Behavior During Hot Open Die Forging," Advanced Mat. Research, Vol. 26-28, pp. 69-72. https://doi.org/10.4028/www.scientific.net/AMR.26-28.69
  10. Hatta, T. and Yoshida, H., 2011, "Application of Numerical Simulation Technology to Microstructure Control in Opendieforging," J. Jpn. Soc. Technol. Plast., Vol. 52, pp. 970-974. https://doi.org/10.9773/sosei.52.970
  11. Shivpuri, R. and Eruc, E., 1993, "Planning and Simulation of the Ring Rolling Process for Improved Productivity," Int. J. Mach. Tools and Manuf., Vol. 33, No. 2, pp. 153-173. https://doi.org/10.1016/0890-6955(93)90071-2
  12. Johnson, W. and Needham, G., 1968, "Experiments on Ring Rolling," Int. J. Mech. Sci., Vol. 10, pp. 95-113. https://doi.org/10.1016/0020-7403(68)90066-0
  13. Kim, N.S., Machida, S. and Kobayashi, S., 1990, "Ring Rolling Simulation by the Three Dimensional Finite Element Method," Int. J. Mech. Sci., Vol. 30, No. 4, pp. 569-577.
  14. Kim, K.H., Suk, H.G. and Huh, M.Y., 2007, "Development of the Profile Ring Rolling Process for Large Slewing Rings of Alloy Steels," J. Mater. Process. Technol., Vol. 187-188, pp. 730-733. https://doi.org/10.1016/j.jmatprotec.2006.11.040

Cited by

  1. Forging process design of cup shaped large forging using finite element method vol.39, pp.7, 2015, https://doi.org/10.5916/jkosme.2015.39.7.729