DOI QR코드

DOI QR Code

혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

  • 한정우 (한국기계연구원 기계시스템안전연구본부) ;
  • 우은택 (동아대학교 기계공학과) ;
  • 한승호 (동아대학교 기계공학과)
  • 투고 : 2015.02.23
  • 심사 : 2015.04.15
  • 발행 : 2015.07.01

초록

혼합모드 피로하중을 받는 균열을 갖은 CTS 시편에 대하여 균열경로 예측이론과 Tanaka 의 등가 응력확대계수식을 적용하여 피로균열진전거동을 평가하였다. 새롭게 생성되는 균열선단의 응력확대계수 산정은 ANSYS 를 이용한 유한요소법을 통해 이루어졌고, 균열경로와 균열증분은 마이크로소프트 엑셀에 프로그래밍한 균열경로예측식과 Paris 식으로 계산되었다. 균열증분으로 새롭게 생성된 균열선단의 기하학적인 정보는 엑셀의 기능을 이용해 ANSYS 의 KSCON 명령어가 인식할 수 있게 변화시켜 균열모델링을 용이하게 하였다. 반복적인 균열해석을 위해 유한요소법과 엑셀을 결합한 FECTUM(Finite Element Crack Tip Updating Method)을 개발하였다. 개발된 FECTUM 을 편측 3 점 굽힘을 통해 혼합모드의 구현이 가능한 SENB 시편(Single Edge Notched Bend Specimen)에 적용해본 결과, 균열경로는 물론 파단될 때까지의 피로하중 반복수의 차이가 3% 미만으로 잘 일치하는 모습을 보여, 개발된 기법의 타당성을 검증하였다.

To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

키워드

참고문헌

  1. Kim, T. Y. and Kim, H. K., 2013, "Mixed-mode Fatigue Crack Growth Behavior of Fully Lower Bainite Steel," Mat. Sci. & Eng. A, Vol. 580, pp. 322-329. https://doi.org/10.1016/j.msea.2013.05.065
  2. Boljanovic, S. and Maksimovic, S., 2011, "Analysis of the Crack Growth Propagation Process Under Mixed-Mode Loading," Eng. Fract. Mech., Vol. 78, pp. 1565-1576. https://doi.org/10.1016/j.engfracmech.2011.02.003
  3. Rozumek., D. and Macha., E., 2009, "A Survey of Failure Criteria and Parameters in Mixed-mode Fatigue Crack Growth," Materials Science, Vol. 45, No. 2, pp. 190-210. https://doi.org/10.1007/s11003-009-9179-2
  4. Richard, H. A., Fulland, M. and Sander, M., 2004, "Theoretical Crack Path Prediction," Fatigue & Fract. Eng. Mater. Struct., Vol. 28, pp. 3-12.
  5. Richard, H. A., Sander, M. and Fulland, M., 2003, "Fatigue Crack Paths Under Complex Loading," In: Fatigue Crack Path (Edited by Carpinteri, A. and Pook, L.), Int. Conference on Fatigue Crack Paths, Parma.
  6. Biner, S. B., 2001, "Fatigue Crack Growth Studies Under Mixed-mode Loading," Int. J. Fatigue, Vol. 23, Supplement, pp. S259-S263.
  7. Richard, H. A., 1985, "Bruchvorhersagen bei uberlagerter normal-und Schubeeanspruchung von Rissen," VDI-Verlag, Dusseldorf, pp. 1-60.
  8. Paris, P. C. and Erdogan, F., 1963, "A Critical Analysis of Crack Propagation Laws," J. Basic. Eng., Trans. ASME, 85, pp. 528-534. https://doi.org/10.1115/1.3656900
  9. Paris, P. C., 1962, "The Growth of Fatigue Cracks due to Variations in Load," Ph. D. Thesis, Lehigh University.
  10. Koo, J. M., 2002, "A Study on the Fatigue Test in A5052 Alloy Sheet Under Mixed Mode Loading," Trans. Korean Soc. Mech. Eng. A, Vol. 26, No. 5, pp. 828-834. https://doi.org/10.3795/KSME-A.2002.26.5.828
  11. Miran, A. C. O., Meggiolaro, M. A., Castro, J. T. P., Martha, L. F., and Biteencourt, T. N., 2003, "Fatigue Life and Crack Path Predictions in Generic 2D Structural Components," Engineering Fracture Mechanics, Vol. 70, pp. 1259-1279. https://doi.org/10.1016/S0013-7944(02)00099-1
  12. Forth, S. C., Favrow, L H., Keat, W. D. and Newman, J. A., 2003, "Three-dimensinal Mixed-Mode Fatigue Crack Growth in a Functionally Graded Titanium Alloy," Engineering Fracture Mechanics, Vol. 70, pp. 2175-2185. https://doi.org/10.1016/S0013-7944(02)00237-0
  13. Yan, X., Zhang, Z. and S. Du, 1992, "Mixed Mode Fracture Criteria for the Materials with Different Yield Strengths in Tension and Compression." Engineering Fracture Mechanics, Vol. 42, pp. 109-116. https://doi.org/10.1016/0013-7944(92)90282-J
  14. Rhee, H. C. and M. M. Salama, 1987, "Mixed-mode Stress Intensity Factor Solutions of a Warped Surface Flaw by Three-dimensional Finite Element Analysis." Engineering Fracture Mechanics, Vol. 28, pp. 203-209. https://doi.org/10.1016/0013-7944(87)90214-1
  15. Tanaka, K., 1974, "Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis." Engineering Fracture Mechanics, Vol. 6, pp. 493-507. https://doi.org/10.1016/0013-7944(74)90007-1
  16. Erdogan, F. and Sih, G. C., 1963, "On the Crack Extension in Plates Under Plane Loading and Transverse Shear," J. of Basic Eng., Vol. 85, Iss. 4, pp. 519-525. https://doi.org/10.1115/1.3656897
  17. Hussain, M. A., Pu, S. L. and Underwood, J. H., 1993, "Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II," In : P. C. Paris and G. R. Irwin (Eds.), Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, pp. 2-28.
  18. Sih, G. C., 1974, "Stain Energy Density Factor Applied to Mixed Mode Crack Problems," International Journal of Fracture, Vol. 20, pp. 305-321.
  19. Richard, H. A. and Benitz, K., 1983, "A Loading Device for the Creation of Mixed Mode in Fracture Mechanics," International Journal of Fracture, Vol. 22, pp. 55-58. https://doi.org/10.1007/BF00942726