DOI QR코드

DOI QR Code

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel

사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구

  • Received : 2014.12.17
  • Accepted : 2015.04.20
  • Published : 2015.07.01

Abstract

The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

본 논문에서는 $600{\times}600{\mu}m$ 사각 마이크로 채널에서의 기-액체 테일러(슬러그) 흐름의 특성을 실험을 통해 살펴보았다. 실험 유체로는 질소와 물을 사용하였으며, 액체 및 기체 겉보기 속도는 각각 0.01 ~ 3 m/s, 0.1 ~ 3 m/s 의 범위에서 테일러 흐름이 나타나는 구간에서만 데이터를 얻었다. 기포 길이, 액체 슬러그 길이, 기포 속도 그리고 기포 생성 주파수를 고속 카메라를 사용하여 이미지 분석을 통해 측정하였다. 제시된 측정값(기포 길이, 액체 슬러그 길이, 기포 속도)과 이전 문헌에서 제안된 경험적 모델의 비교결과 대부분 오차가 50% 이상으로 나타났다. 따라서 기포와 액체 슬러그 길이 그리고 기포 속도에 대한 개선된 모델을 제시하였고, ${\pm}20%$ 이내의 비교적 우수한 결과를 볼 수 있었다. 또한 기포 생성 주파수는 기포 길이, 액체슬러그 길이 그리고 기포 속도의 관계를 이용하여 ${\pm}20%$ 이내에서 예측가능함을 알 수 있었다.

Keywords

References

  1. Shui, L., Eijkel, J. and Berg, A., 2007, "Multiphase Flow in Micro- and Nanochannels," Sensors and Actuators B 121, pp. 263-276. https://doi.org/10.1016/j.snb.2006.09.040
  2. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., 2006, "Formation of Droplets and Bubbles in a Microfluidic T-junction - Scaling and Mechanism of Break-up," Lab on a Chip 6, pp. 437-446. https://doi.org/10.1039/b510841a
  3. Van Steijn, V., Kreutzer, M. T. and Kleijn, C. R., 2007, "${\mu}$-PIV Study of the Formation of Segmented Flow in Microfluidic T-junctions," Chem. Eng. Sci. 62, pp. 7505-7514. https://doi.org/10.1016/j.ces.2007.08.068
  4. Fu, T., Ma, Y., Funfschilling, D., Zhu, C. and Li, H. Z., 2010, "Squeezing-to-dripping Transition for Bubble Formation in a Microfluidic T-junction," Chem. Eng. Sci. 65, pp. 3739-3748. https://doi.org/10.1016/j.ces.2010.03.012
  5. Chaoqun, Y., Yuchao Z., Chunbo Y., Minhui, D., Zhengya, D. and Guangwen, C., 2013, "Characteristics of Slug Flow with Inertial Effects in a Rectangular Microchannel," Chem. Eng. Sci. 95, pp. 246-256. https://doi.org/10.1016/j.ces.2013.03.046
  6. Qian, D. and Lawal, A., 2006, "Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-junction Microchannel," Chem. Eng. Sci, Vol. 61, pp. 7609-7625. https://doi.org/10.1016/j.ces.2006.08.073
  7. Yue, J., Luo, L., Gonthier, Y., Chen, G. and Yuan, Q., 2009, "An Experimental Study of Air-water Taylor Flow and Mass Transfer Inside Square Microchannels," Chem. Eng. Sci. 64, pp. 3697-3708. https://doi.org/10.1016/j.ces.2009.05.026
  8. Vokel. N., 2009, "Design and Characterization of Gas-liquid Microreactors," Ph.D Thesis, Institut National Polytechnique de Toulouse, France.
  9. Yun, J., Lei, Q., Zhang, S., Shen, S. and Yao, K., 2010, "Slug Flow Characteristics of Gas-miscible Liquids in a Rectangular Microchannel with Cross and T-shaped Junctions," Chem. Eng. Sci. 65, pp. 5256-5263. https://doi.org/10.1016/j.ces.2010.06.031
  10. Liu, H., Vandu, Chippla O. and Krishna, Rajamani., 2005, "Hydrodynamics of Taylor Flow in Vertical Capillaries: Flow Regimes, Bubble Rise Velocity, Liquid Slug Length, and Pressure Drop," Ind. Eng. Chem. Res. 44, pp. 4884-4897. https://doi.org/10.1021/ie049307n
  11. Lee, K. G., Lee, J. K., Park, T., Kim, G. N. and Park, E. J., 2015, "Effect of Various Shapes of Mixer Geometry on Two-phase Flow Patterns in a Micro-channel," Korean J. Air-Condi. and Ref. Eng. 27, pp.75-80.
  12. Lee, K. G. and Lee, J. K., 2015, "Study on the Characteristics of Bubble and Liquid Slug for Gas-Liquid Taylor flow in a Rectangular Micro-channel," Korean J. Air-Condi. and Ref. Eng., Accepted.
  13. Zuber, N. and Findlay, J. A., 1968, "Average Volumetric Concentration in Two-phase Flow System," Transactions of ASME, Journal of Heat Transfer 87, pp. 453-468.
  14. Fukano, T. and Kariyasaki, A., 1993, "Characteristics of Gas-liquid Two-phase Flow in a Capillary Tube," Nuclear Engineering and Design, Vol. 141, pp. 59-68. https://doi.org/10.1016/0029-5493(93)90092-N
  15. Pohorecki, R. and Kula, K., 2008, "A Simple Mechanism of Bubble and Slug Formation in Taylor Flow in Microchannels," Chem. Eng. Research and Design. 86, pp. 997-1001. https://doi.org/10.1016/j.cherd.2008.03.013

Cited by

  1. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants vol.15, pp.10, 2015, https://doi.org/10.3390/s151026961