DOI QR코드

DOI QR Code

업싸이클링된 암모늄 파라텡스텐의 열적 및 화학적 분해법 비교

Comparing Thermal and Chemical Decomposition of Up-Cycled Ammonium Paratungstate(APT)

  • 정준기 (강릉원주대학교 파인세라믹기술혁신센터) ;
  • 온진호 (강릉원주대학교 파인세라믹기술혁신센터) ;
  • 김성진 (강릉원주대학교 파인세라믹기술혁신센터) ;
  • 박상엽 (강릉원주대학교 파인세라믹기술혁신센터)
  • Chung, Jun-Ki (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University) ;
  • On, Jin-Ho (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University) ;
  • Kim, Sung-Jin (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University) ;
  • Park, Sang-Yeup (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University)
  • 투고 : 2015.04.30
  • 심사 : 2015.05.27
  • 발행 : 2015.06.27

초록

The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. $WO_3$ particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at $600^{\circ}C$ in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the up-cycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in $658^{\circ}C$. The XRD results showed that APT completely decomposed to $WO_3$ by thermal decomposition and chemical precipitation. The particle size of the synthesized $WO_3$ powders by thermal decomposition with 2 h of planetary milling was around $2{\mu}m$ During the chemical precipitation process, the particle size of the synthesized $WO_3$ powders showed a round-shape with ${\sim}0.6{\mu}m$ size.

키워드

참고문헌

  1. B. F. Kieffer, Int. Tungsten Symposium Tungsten, 2d, San Francisco, June 1-5 (1982).
  2. B. F. Kieffer, Int. J. Refract. Met. Hard Mater., 5, 65 (1986).
  3. T. M. Latha and S. Venkatachalam, Hydrometallurgy, 22(3), 353 (1989). https://doi.org/10.1016/0304-386X(89)90030-3
  4. E. Lassner, Int. J. Refract. Met. Hard Mater., 13(1-3), 35 (1995). https://doi.org/10.1016/0263-4368(95)00002-X
  5. S. Venkateswaran, W-D. Schubert, B. Lux, M. Ostermann and B. Kieffer, Int J. Refract. Met. Hard Mater., 14(4), 263 (1996). https://doi.org/10.1016/0263-4368(95)00055-0
  6. V. V. Malyshev and A. I. Gab, Theor. Found. Chem. Eng., 41(4), 436 (2007). https://doi.org/10.1134/S0040579507040161
  7. J. C. Lee, E. Y. Kim, J. H. Kim, W. B. Kim, B. S. Kim and B. D. Pandey, Int J. Refract. Met. Hard Mater., 29(3), 365 (2011). https://doi.org/10.1016/j.ijrmhm.2011.01.003
  8. A. K. Basu and F. R. Sale, J. Mater. Sci., 12(6), 1115 (1977). https://doi.org/10.1007/BF02426848
  9. S. A. A. Mansour, M. A. Mohamed and M. I. Zaki, Thermochim. Acta, 129(2), 187 (1988). https://doi.org/10.1016/0040-6031(88)87335-0
  10. J. G. Lake and W. R. Ott, Thermochim. Acta, 32(1-2), 225 (1979). https://doi.org/10.1016/0040-6031(79)85110-2
  11. M. S. Marashi, J. V. Khaki and S. M. Zebarjad, Int. J. Refract. Met. Hard Mater., 30(1), 177 (2012). https://doi.org/10.1016/j.ijrmhm.2011.08.004
  12. A. O. Kalpakli, A. Arabaci, C. Kahruman and I. Yusufoglu, Int. J. Refract. Met. Hard Mater., 37, 106 (2013). https://doi.org/10.1016/j.ijrmhm.2012.11.004
  13. T. M. Taylor, J. Am. Chem. Soc., 24(7), 629 (1902). https://doi.org/10.1021/ja02021a002