DOI QR코드

DOI QR Code

Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs

동조액체기둥감쇠기의 동적특성을 파악하기 위한 가변전압측정 시스템 개발

  • Jang, Seok-Jung (Department of Architectural Engineering, DanKook Univ.) ;
  • Kim, Jun-Hee (Department of Architectural Engineering, DanKook Univ.) ;
  • Min, Kyung-Won (Department of Architectural Engineering, DanKook Univ.)
  • Received : 2015.03.02
  • Accepted : 2015.06.18
  • Published : 2015.06.30

Abstract

In this study, vertical motion of a Tuned Liquid Column Damper(TLCD) is measured by a variable voltage measurement system in the electric field and design parameters of the TLCD are determined. First, nonlinear damping term of the TLCD is replaced as the equivalent viscous damping term. The natural frequency and damping ratio of dynamic characteristics of the TLCD are verified. In addition, a novel liquid level measurement system is developed for measuring vertical motion of the TLCD. For the experimental achievement, experimental characterizations of natural frequency and damping ratio of the TLCD are undertaken utilizing the developed variable voltage sensing. Also, shake table testing is performed to determine the dynamic characteristics of the TLCD. As a result, the feasibility of the proposed liquid level measurement system is verified by comparison with the capacitive type wavemeter.

본 연구에서는 동조액체기둥감쇠기의 비선형감쇠항을 등가점성감쇠항으로 치환한 등가선형 동조액체기둥감쇠기 모델을 유도하였으며 동조액체기둥감쇠기의 동적거동인 고유진동수와 감쇠비를 이론적으로 파악하였다. 동조액체기둥감쇠기에 일정한 전기장을 형성한 후 동조액체기둥감쇠기의 수직운동에 의해 발생되는 가변전압을 측정하여 수조 내부의 수위로 변환하는 식을 유도하였다. 또한 본 연구에서 제안한 동조액체기둥감쇠기의 수위측정 시스템의 타당성을 검증하기 위하여 고가의 전기 용량식 파고계와 비교 및 검증하였다. 마지막으로 본 연구에서 제안한 수위측정 시스템을 동조액체기둥감쇠기에 적용, 진동대 실험을 실시하여 고유진동수와 감쇠비를 파악하였고, 이론상의 고유진동수와 실험상의 고유진동수가 일치하였음을 확인하였으며, 진동수비 변화에 따른 동조액체기둥감쇠기의 감쇠비 변화를 확인하였다.

Keywords

References

  1. Chang, C.C., Qu, W.L. (1998) Unified Dynamic Absorber Design Formulas for Tuned Liquid Column Dampers, Struct. Des. Tall Build., 7, pp.147-166 https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
  2. Gao, H., Kwok, K.C.S., Samali, B. (1999) Optimization of Tuned Liquid Column Dampers, Eng. Struct., 19, pp.476-486.
  3. Iwan, W.D., Yang, I. (1972) Application of Statistical Linearization Techniques to Non-linear Multi-degree of Freedom Systems, J. Appl. Mech., 39(2), pp.545-550. https://doi.org/10.1115/1.3422714
  4. Kareem, A., Kijewski, T. (1999) Mitigation of Motions of Tall Buildings with Specific Examples of Recent Applications, Wind & Struct., 2(3), pp.201-251. https://doi.org/10.12989/was.1999.2.3.201
  5. Lee, S.K., Lee, H.R., Min, K.W. (2010) Experimental Verification on Nonlinear Dynamic Characteristic of a Tuned Liquid Column Damper Subjected to Various Excitation Amplitudes, Struct. Des. Tall & Spec. Build., 21(5), pp.374-388. https://doi.org/10.1002/tal.606
  6. Min, K.W., Kim, H.S., Lee, S.H., Kim, H.G., Ahn, S.K. (2005) Performance Evaluation of Tuned Liquid Column Dampers for Response Control of a 76-story Benchmark Building, Eng. Mech., 27(7), pp.1101-1112.
  7. Min, K.W., Kim, J., Lee, H.R. (2014) A Design Procedure of Two-way Liquid Dampers for Attenuation of Wind-induced Responses of Tall Buildings, J. Wind Eng. & Ind. Aerodyn., 129, pp.22-30 https://doi.org/10.1016/j.jweia.2014.03.003
  8. Min, K.W., Kim, J., Kim, Y.W. (2014) Design and Test of Tuned Liquid Mass Dampers for Attenuating Wind Responses of a Full Scale Building, Smart Mater. & Struct., 23, pp.045020 https://doi.org/10.1088/0964-1726/23/4/045020
  9. Olson, D.E., Reed, D.A. (2001) A Nonlinear Numerical Model for sloped-bottom Tuned Liquid Dampers, Earthq. Eng. & Struct. Dyn., 30, pp.731-743. https://doi.org/10.1002/eqe.34
  10. Reed, D., Yeh, H., Yu, J. K., Gardarsson, S. (1998) Tuned Liquid Dampers under Large Amplitude Excitation, J. Wind Eng. & Ind. Aerodyn., 74(76), pp.923-930.
  11. Sakai, F., Takaeda, S., Tamaki, T. (1989) Tuned Liquid Column Damper-new Type device for Suppression of Building Vibration, Proc. Int. Conf. High-rise Build., pp.926-931.
  12. Sun, L. M., Fujino, Y., Pacheco, B. M., Chairseri, P. (1992) Modeling of Tuned Liquid Damper(TLD), J. Wind Eng. & Ind. Aerodyn., 41(44), pp.1883-1894.
  13. Wen, Y.K. (1980) Equivalent Linearization for Hysteretic Systems under Random Excitation, J. Appl. Mech., 47, pp.150-154. https://doi.org/10.1115/1.3153594
  14. Wu, J.-C., Shih, M.H., Lin, Y.Y., Shen, Y.C. (2005) Design Guidelines for Tuned Liquid Column Damper for Structures Responding to Wind, Eng. Mech., 27(13), pp.1893-1905.
  15. Yalla, S. K. (2001) Liquid Dampers for Mitigation of Structural Response : Theoretical Development and Experimental Validation, Doctoral dissertation, Department of Civil Engineering and Geological Science, University of Notre Dame.
  16. Yalla, S.K., Kareem, A. (2000) Optimum Absorber Parameters for Tuned Liquid Column Dampers, J. Struct. Eng., ASCE, 126, pp.906-915. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)
  17. You, K.P., You, J.Y., Song, C.H., Kim, Y.M. (2009) A Study on the Orifice Damping Characteristics of Tuned Liquid Column Damper with Various Excitation Amplitude, J. Arch. Inst. Korea : Struct. & Const., 25(6), pp.41-48.
  18. Yu, J.K., Wakahara, T., Reed, D.A. (1999) A Non-linear Numerical Model of the Tuned Liquid Damper, Earthq. Eng. & Struct. Dyn., 28, pp.671-686. https://doi.org/10.1002/(SICI)1096-9845(199906)28:6<671::AID-EQE835>3.0.CO;2-X