References
- M. A. Nowak and R. M. May, "Virus dynamics: Mathematical Principles of Immunology and Virology," Oxford Uni., Oxford, 2000.
- M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. https://doi.org/10.1126/science.272.5258.74
- A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. https://doi.org/10.1137/S0036144598335107
-
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of
$CD4^+$ T cells, Math. Biosc., 200(1) (2006), 44-57. https://doi.org/10.1016/j.mbs.2005.12.026 - Y. Zhao, D. T. Dimitrov, H. Liu and Y. Kuang, Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions, Bull. Math. Biol., 75 (2013), 649-675. https://doi.org/10.1007/s11538-013-9824-7
- D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29-64. https://doi.org/10.1006/bulm.2001.0266
- P. K. Roy, A. N. Chatterjee, D. Greenhalgh and Q. J. A. Khan, Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal. Real World Appl., 14 ( 2013), 1621-1633. https://doi.org/10.1016/j.nonrwa.2012.10.021
- A. M. Elaiw, I. A. Hassanien and S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779-794. https://doi.org/10.4134/JKMS.2012.49.4.779
- A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383-394. https://doi.org/10.1002/mma.2596
- A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 69 (2012), 423-435. https://doi.org/10.1007/s11071-011-0275-0
- A. M. Elaiw and X. Xia, HIV dynamics: Analysis and robust multirate MPC-based treatment schedules, J. Math. Anal. Appl., 356 (2009), 285-301.
- A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253-2263. https://doi.org/10.1016/j.nonrwa.2009.07.001
- S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of HBV infection with logistic hepatocyte growth, Math. Biosc. Eng., 6 (2009), 283-299. https://doi.org/10.3934/mbe.2009.6.283
- S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153. https://doi.org/10.1080/17513750701769873
- J. Li, K.Wang and Y. Yang, Dynamical behaviors of an HBV infection model with logistic hepatocyte growth, Math. Comput. Modelling, 54 (2011), 704-711. https://doi.org/10.1016/j.mcm.2011.03.013
- R. Qesmi, J. Wu, J. Wu and J. M. Heffernan, Influence of backward bifurcation in a model of hepatitis B and C viruses, Math. Biosci., 224 (2010), 118-125. https://doi.org/10.1016/j.mbs.2010.01.002
- R. Qesmi, S. ElSaadany, J. M. Heffernan and J. Wu, A hepatitis B and C virus model with age since infection that exhibit backward bifurcation, SIAM J. Appl. Math., 71 (4) (2011), 1509-1530. https://doi.org/10.1137/10079690X
- A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J, Layden and A. S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282 (1998), 103-107. https://doi.org/10.1126/science.282.5386.103
- M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Anal. Real World Appl., 13 (2012), 1080-1092. https://doi.org/10.1016/j.nonrwa.2011.02.026
- P. Tanvi, G. Gujarati and G. Ambika, Virus antibody dynamics in primary and secondary dengue infections, J. Math. Biol., 69 (2014), 1773-1800. https://doi.org/10.1007/s00285-013-0749-4
- J. A. Deans and S. Cohen, Immunology of malaria, Ann. Rev. Microbiol. 37 (1983), 25-49. https://doi.org/10.1146/annurev.mi.37.100183.000325
- A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267. https://doi.org/10.1007/s00285-005-0321-y
- A. M. Elaiw and N. H. AlShameani, Global analysis for a delay-distributed viral infection model with antibodies and general nonlinear incidence rate, J. Korean Soc. Ind. Appl. Math., 18(4) (2014), 317-335. https://doi.org/10.12941/jksiam.2014.18.317
- M. A. Obaid and A. M. Elaiw, Stability of virus infection models with antibodies and chronically infected cells, Abstr. Appl. Anal, 2014, Article ID 650371.
- A. M. Elaiw, A. Alhejelan and M. A. Alghamdi, Global dynamics of virus infection model with antibody immune response and distributed delays, Discrete Dyn. Nat. Soc., 2013 (2013), Article ID 781407.
- T. Wang, Z. Hu and F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Anal. Appl., 411 (2014) 63-74. https://doi.org/10.1016/j.jmaa.2013.09.035
- T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comput. Simulation, 89 (2013), 13-22. https://doi.org/10.1016/j.matcom.2013.03.004
- S. Wang and D. Zou, Global stability of in host viral models with humoral immunity and intracellular delays, J. Appl. Math. Mod., 36 (2012), 1313-1322. https://doi.org/10.1016/j.apm.2011.07.086
-
A. S. Perelson, D. Kirschner and R. De Boer, Dynamics of HIV infection of
$CD4^+$ T cells, Math. Biosci., 114(1) (1993), 81-125. https://doi.org/10.1016/0025-5564(93)90043-A - A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol. 66 (2004), 879-883 https://doi.org/10.1016/j.bulm.2004.02.001
- B. Buonomo and C. Vargas-De-Le, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl. 385 (2012), 709-720. https://doi.org/10.1016/j.jmaa.2011.07.006
- J. K. Hale and S. Verduyn Lunel, "Introduction to functional differential equations," Springer-Verlag, New York, 1993.
- X. Song, A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281-297. https://doi.org/10.1016/j.jmaa.2006.06.064
- A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. https://doi.org/10.1007/s11538-007-9196-y
- R. R. Regoes, D. Ebert, S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. Ser. B, 269 (2002), 271-279. https://doi.org/10.1098/rspb.2001.1816
- R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 75-81. https://doi.org/10.1016/j.jmaa.2010.08.055
- G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infection, SIAM J. Appl. Math., 70 (2010), 2693-2708. https://doi.org/10.1137/090780821
- R. Larson and B. H. Edwards, "Calculus of a single variable," Cengage Learning, Inc., USA, (2010).