Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders

신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰

  • Lee, Kyungmin (Laboratory for Behavioral Neural Circuit and Physiology, Department of Anatomy, Graduate School of Medicine, Kyungpook National University)
  • 이경민 (경북대학교 의학전문대학원 해부학교실)
  • Received : 2015.03.16
  • Accepted : 2015.05.15
  • Published : 2015.05.31

Abstract

The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

Keywords

References

  1. Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 1983;18:951-969.
  2. Purves D. Neuroscience. 4th ed. Sunderland: Sinauer Associates, Inc.;2008. p.9-10.
  3. Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol 2012;814:23-45. https://doi.org/10.1007/978-1-61779-452-0_3
  4. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012;92:959-975. https://doi.org/10.1189/jlb.0212100
  5. Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014;62:1856-1877. https://doi.org/10.1002/glia.22716
  6. Kandel ER. Principles of Neural Science. 5th ed. New York: Mc-Graw-Hill Professional;2012. p.71.
  7. Stevenson JA, Yoon MG. Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1981;1:862-875. https://doi.org/10.1523/JNEUROSCI.01-08-00862.1981
  8. Peters A, Palay SL, Webster HD. The Fine Structure of the Nervous System. New York: Oxford University Press;1991.
  9. Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Muller C, et al. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000;24:295-340. https://doi.org/10.1016/S0149-7634(99)00080-9
  10. Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 2010;11:227-238. https://doi.org/10.1038/nrn2803
  11. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V. Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 2012;4. pii: e00080. doi:10.1042/AN20110061.
  12. Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2011;59:152-165. https://doi.org/10.1002/glia.21087
  13. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005;6: 626-640. https://doi.org/10.1038/nrn1722
  14. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014;81: 728-739. https://doi.org/10.1016/j.neuron.2014.02.007
  15. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002;417:941-944. https://doi.org/10.1038/nature00867
  16. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000; 403:434-439. https://doi.org/10.1038/35000219
  17. Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, et al. Inhibitor of neurite outgrowth in humans. Nature 2000;403:383-384. https://doi.org/10.1038/35000287
  18. Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 2010;30:12432-12445. https://doi.org/10.1523/JNEUROSCI.0895-10.2010
  19. Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry 2012;13:482-492. https://doi.org/10.3109/15622975.2011.583941
  20. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008;28:8138-8143. https://doi.org/10.1523/JNEUROSCI.1006-08.2008
  21. Dalmau I, Finsen B, Tonder N, Zimmer J, Gonzalez B, Castellano B. Development of microglia in the prenatal rat hippocampus. J Comp Neurol 1997;377:70-84. https://doi.org/10.1002/(SICI)1096-9861(19970106)377:1<70::AID-CNE7>3.0.CO;2-G
  22. Morgan SC, Taylor DL, Pocock JM. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 2004;90:89-101.
  23. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010;7:483-495. https://doi.org/10.1016/j.stem.2010.08.014
  24. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312-318. https://doi.org/10.1016/0166-2236(96)10049-7
  25. Kirkham M, Berg DA, Simon A. Microglia activation during neuroregeneration in the adult vertebrate brain. Neurosci Lett 2011; 497:11-16. https://doi.org/10.1016/j.neulet.2011.04.007
  26. Welberg L. Synaptic plasticity: a synaptic role for microglia. Nat Rev Neurosci 2014;15:69.
  27. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95:13290-13295. https://doi.org/10.1073/pnas.95.22.13290
  28. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004;67:269-275. https://doi.org/10.1016/S0920-9964(03)00181-6
  29. Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol 2011;164:1162-1194. https://doi.org/10.1111/j.1476-5381.2011.01386.x
  30. Malki K, Pain O, Tosto MG, Du Rietz E, Carboni L, Schalkwyk LC. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 2015;5:e519. https://doi.org/10.1038/tp.2015.15
  31. Gotz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008;9:532-544. https://doi.org/10.1038/nrn2420
  32. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 2014;20:886-896. https://doi.org/10.1038/nm.3639
  33. Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 2010;67:155-166. https://doi.org/10.1001/archgenpsychiatry.2009.196
  34. Haybaeck J, Postruznik M, Miller CL, Dulay JR, Llenos IC, Weis S. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Neuropsychiatr Dis Treat 2015;11:279-289.
  35. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003;362:798-805. https://doi.org/10.1016/S0140-6736(03)14289-4
  36. Vostrikov V, Uranova N. Age-related increase in the number of oligodendrocytes is dysregulated in schizophrenia and mood disorders. Schizophr Res Treatment 2011;2011:174689.
  37. Miyata S, Hattori T, Shimizu S, Ito A, Tohyama M. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. Biomed Res Int 2015; 2015:492367.
  38. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008;64:820-822. https://doi.org/10.1016/j.biopsych.2008.04.025
  39. Mizoguchi Y, Kato TA, Horikawa H, Monji A. Microglial intracellular Ca(2+) signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 2014;8:370.
  40. Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossio LF, Goetz T, et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun 2014;38:175-184. https://doi.org/10.1016/j.bbi.2014.01.019
  41. Gosselin RD, Gibney S, O'Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience 2009;159: 915-925. https://doi.org/10.1016/j.neuroscience.2008.10.018
  42. Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 2010; 12:541-549. https://doi.org/10.1111/j.1399-5618.2010.00838.x
  43. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 2008;64: 863-870. https://doi.org/10.1016/j.biopsych.2008.06.008
  44. Williams MR, Sharma P, Fung KL, Pearce RK, Hirsch SR, Maier M. Axonal myelin increase in the callosal genu in depression but not schizophrenia. Psychol Med 2015 Feb 25 [Epub]. http://dx.doi.org/10.1017/S0033291715000136.
  45. Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013;2013:608654.
  46. Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271:126-128. https://doi.org/10.1016/S0304-3940(99)00545-5
  47. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 2011;8:94. https://doi.org/10.1186/1742-2094-8-94
  48. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 2013;65:1655-1662. https://doi.org/10.1016/S1734-1140(13)71527-5
  49. Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1${\beta}$-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 2014;41:90-100. https://doi.org/10.1016/j.bbi.2014.04.007
  50. Watkins CC, Sawa A, Pomper MG. Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl Psychiatry 2014;4:e350. https://doi.org/10.1038/tp.2013.119
  51. Tarczyluk MA, Nagel DA, Rhein Parri H, Tse EH, Brown JE, Coleman MD, et al. Amyloid ${\beta}$ 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks. J Cereb Blood Flow Metab 2015 Apr 8 [Epub]. http://dx.doi.org/10.1038/jcbfm.2015.58.
  52. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ. Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target. Am J Pathol 2010;177:1422-1435. https://doi.org/10.2353/ajpath.2010.100087
  53. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement 2014 Sep 16 [Epub]. http://dx.doi.org/10.1016/j.jalz.2014.06.016.