DOI QR코드

DOI QR Code

Automatical Cranial Suture Detection based on Thresholding Method

  • Park, Hyunwoo (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Kang, Jiwoo (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Yong Oock (Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine) ;
  • Lee, Sanghoon (Department of Electrical & Electronic Engineering, Yonsei University)
  • 투고 : 2015.05.12
  • 심사 : 2015.05.25
  • 발행 : 2015.06.10

초록

Purpose The head of infants under 24 months old who has Craniosynostosis grows extraordinarily that makes head shape unusual. To diagnose the Craniosynostosis, surgeon has to inspect computed tomography(CT) images of the patient in person. It's very time consuming process. Moreover, without a surgeon, it's difficult to diagnose the Craniosynostosis. Therefore, we developed technique which detects Craniosynostosis automatically from the CT volume. Materials and Methods At first, rotation correction is performed to the 3D CT volume for detection of the Craniosynostosis. Then, cranial area is extracted using the iterative thresholding method we proposed. Lastly, we diagnose Craniosynostosis by analyzing centroid relationships of clusters of cranial bone which was divided by cranial suture. Results Using this automatical cranial detection technique, we can diagnose Craniosynostosis correctly. The proposed method resulted in 100% sensitivity and 90% specificity. The method perfectly diagnosed abnormal patients. Conclusion By plugging-in the software on CT machine, it will be able to warn the possibility of Craniosynostosis. It is expected that early treatment of Craniosynostosis would be possible with our proposed algorithm.

키워드

참고문헌

  1. Lajeunie E, Merrer M.L, Bonati-Pellie C, Marchac D, Renier D. Genetic study of nonsyndromic coronal craniosynostosis. American Journal of Medical Genetics 1995;55(4):500-504 https://doi.org/10.1002/ajmg.1320550422
  2. Kirmi O, Lo S, Johnson D, Anslow P. Craniosynostosis: A radiological and surgical perspective. Seminars in Ultrasound, CT and MRI 2009;30(6):492-512
  3. Panchal J, Uttchin V. Management of craniosynostosis. Plastic and reconstructive surgery 2003;111(6):2032-2048 https://doi.org/10.1097/01.PRS.0000056839.94034.47
  4. Posnick J, Lin K, Chen P, Armstrong D. Metopic synostosis: Quantitative assessment of presenting deformity and surgical results based on CT scans. Plastic and Reconstructive Surgery 1994;93(1):16-24 https://doi.org/10.1097/00006534-199401000-00003
  5. Kolar J, Salter E. Preoperative anthropometric dysmorphology in metopic synostosis. American Journal of Physical Anthropology 1997;103(3):341-351 https://doi.org/10.1002/(SICI)1096-8644(199707)103:3<341::AID-AJPA4>3.0.CO;2-T
  6. Havlik R. Analysis and treatment of severe trigonocephaly. Plastic and Reconstructive Surgery 1999;103(2):381-390 https://doi.org/10.1097/00006534-199902000-00004
  7. Ruiz-Correa S, Starr J, Lin H, Kapp-Simon K, Sze R, Ellenbogen R, et al. New severity indices for quantifying single-suture metopic craniosynostosis. Neurosurgery 2008;63(2):318-324 https://doi.org/10.1227/01.NEU.0000316417.06500.DA
  8. Paik H, Byeon J. Anterior two-thirds calvarial remodelling: operative technique for the correction of metopic synostosis in toddlers. Journal of Plastic, Reconstructive and Aesthetic Surgery 2010;63(1):36-41 https://doi.org/10.1016/j.bjps.2008.08.076
  9. Fearon J, Ruotolo R, Kolar J. Single sutural craniosynostoses: Surgical outcomes and long-term growth. Plastic and Reconstructive Surgery 2009;123(2):635-642 https://doi.org/10.1097/PRS.0b013e318195661a
  10. Anderson D, Anderson L, and Glanze W. Mosby's Medical Dictionary. Mosby St. Louis, 2009. 233, 234
  11. Cheng Y, Leow WK, Lim TC. "Automatic identification of Frankfurt plane and mid-sagittal plane of skull," in 2012 IEEE Workshop on the Applications of Computer Vision, 2012, pp. 233-238
  12. Gao Y, Jean FM, Norman K, Jose A. Optimal region growing segmentation and its effect on classification accuracy. International Journal of Remote Sensing 2011. 3747-3763
  13. Tang J. A color image segmentation algorithm based on region growing. Computer Engineering and Technology (ICCET), 2010 2nd International Conference on. Vol. 6. IEEE, 2010
  14. Mendoza CS, Begoria A, Carmen S, Tomoas G. Fast parameter-free region growing segmentation with application to surgical planning. Machine Vision and Applications, 2012. 165-177
  15. Georg M, Macro D, Christian H, Joachim EW, Daniel R, Thomas G, et al. Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm. European radiology, 2006. 1117-1123
  16. Qin AK, and David AC. Multivariate image segmentation using semantic region growing with adaptive edge penalty. Image Processing, IEEE Transactions on, 2010. 2157-2170