참고문헌
- Adada, M., Canals, D., Hannun, Y.A., and Obeid, L.M. (2014). Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim. Biophys. Acta 1841, 727-737. https://doi.org/10.1016/j.bbalip.2013.07.002
- Airola, M.V., and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 2013, 57-76.
- Allan, D. (2000). Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem. J. 345 Pt 3, 603-610. https://doi.org/10.1042/0264-6021:3450603
- Apraiz, A., Idkowiak-Baldys, J., Nieto-Rementeria, N., Boyano, M.D., Hannun, Y.A., and Asumendi, A. (2012). Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem. Cell Biol. 90, 209-223. https://doi.org/10.1139/o2012-001
- Asano, S., Kitatani, K., Taniguchi, M., Hashimoto, M., Zama, K., Mitsutake, S., Igarashi, Y., Takeya, H., Kigawa, J., Hayashi, A., et al. (2012). Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol. Cell. Biol. 32, 3242-3252. https://doi.org/10.1128/MCB.00121-12
- Ayto, R., and Hughes, D.A. (2013). Gaucher disease and myeloma. Crit. Rev. Oncog. 18, 247-268. https://doi.org/10.1615/CritRevOncog.2013006061
- Baek, M.Y., Yoo, H.S., Nakaya, K., Moon, D.C., and Lee, Y.M. (2001). Sphingolipid metabolic changes during chiral C2-ceramides induced apoptosis in human leukemia cells. Arch. Pharm. Res. 24, 144-149. https://doi.org/10.1007/BF02976482
- Baran, Y., Salas, A., Senkal, C.E., Gunduz, U., Bielawski, J., Obeid, L.M., and Ogretmen, B. (2007). Alterations of ceramide/ sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J. Biol. Chem. 282, 10922-10934. https://doi.org/10.1074/jbc.M610157200
- Baran, Y., Bielawski, J., Gunduz, U., and Ogretmen, B. (2011). Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res. Clin. Oncol. 137, 1535-1544. https://doi.org/10.1007/s00432-011-1016-y
- Bezombes, C., Grazide, S., Garret, C., Fabre, C., Quillet-Mary, A., Muller, S., Jaffrezou, J.P., and Laurent, G. (2004). Rituximab antiproliferative effect in B-lymphoma cells is associated with acid- sphingomyelinase activation in raft microdomains. Blood 104, 1166-1173. https://doi.org/10.1182/blood-2004-01-0277
- Bleicher, R.J., and Cabot, M.C. (2002). Glucosylceramide synthase and apoptosis. Biochim. Biophys. Acta 1585, 172-178. https://doi.org/10.1016/S1388-1981(02)00338-4
- Bonhoure, E., Pchejetski, D., Aouali, N., Morjani, H., Levade, T., Kohama, T., and Cuvillier, O. (2006). Overcoming MDRassociated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20, 95-102. https://doi.org/10.1038/sj.leu.2404023
- Boot, R.G., Verhoek, M., Donker-Koopman, W., Strijland, A., van Marle, J., Overkleeft, H.S., Wennekes, T., and Aerts, J.M. (2007). Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J. Biol. Chem. 282, 1305-1312. https://doi.org/10.1074/jbc.M610544200
- Borge, M., Remes Lenicov, F., Nannini, P.R., de los Rios Alicandu, M.M., Podaza, E., Ceballos, A., Fernandez Grecco, H., Cabrejo, M., Bezares, R.F., Morande, P.E., et al. (2014). The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. J. Immunol. 193, 3165-3174. https://doi.org/10.4049/jimmunol.1400547
- Burns, T.A., Subathra, M., Signorelli, P., Choi, Y., Yang, X., Wang, Y., Villani, M., Bhalla, K., Zhou, D., and Luberto, C. (2013). Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene. J. Lipid Res. 54, 794-805. https://doi.org/10.1194/jlr.M033985
- Camgoz, A., Gencer, E.B., Ural, A.U., Avcu, F., and Baran, Y. (2011). Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leuk. Lymphoma 52, 1574-1584. https://doi.org/10.3109/10428194.2011.568653
- Carpinteiro, A., Dumitru, C., Schenck, M., and Gulbins, E. (2008). Ceramide-induced cell death in malignant cells. Cancer Lett. 264, 1-10. https://doi.org/10.1016/j.canlet.2008.02.020
- Casson, L., Howell, L., Mathews, L.A., Ferrer, M., Southall, N., Guha, R., Keller, J.M., Thomas, C., Siskind, L.J., and Beverly, L.J. (2013). Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS One 8, e54525. https://doi.org/10.1371/journal.pone.0054525
- Cattoretti, G., Mandelbaum, J., Lee, N., Chaves, A.H., Mahler, A.M., Chadburn, A., Dalla-Favera, R., Pasqualucci, L., and MacLennan, A.J. (2009). Targeted disruption of the S1P2 sphingosine 1- phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686-8692. https://doi.org/10.1158/0008-5472.CAN-09-1110
- Chapman, J.V., Gouaze-Andersson, V., Messner, M.C., Flowers, M., Karimi, R., Kester, M., Barth, B.M., Liu, X., Liu, Y.Y., Giuliano, A.E., et al. (2010). Metabolism of short-chain ceramide by human cancer cells--implications for therapeutic approaches. Biochem. Pharmacol. 80, 308-315. https://doi.org/10.1016/j.bcp.2010.04.001
- Chen, L., Luo, L.F., Lu, J., Li, L., Liu, Y.F., Wang, J., Liu, H., Song, H., Jiang, H., Chen, S.J., et al. (2014). FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 9, e103033. https://doi.org/10.1371/journal.pone.0103033
- Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45, 11247-11256. https://doi.org/10.1021/bi061307z
- Dbaibo, G.S., Kfoury, Y., Darwiche, N., Panjarian, S., Kozhaya, L., Nasr, R., Abdallah, M., Hermine, O., El-Sabban, M., de The, H., et al. (2007). Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult Tcell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92, 753-762. https://doi.org/10.3324/haematol.10968
- Degagne, E., and Saba, J.D. (2014). S1pping fire: Sphingosine-1- phosphate signaling as an emerging target in inflammatory bowel disease and colitis-associated cancer. Clin. Exp. Gastroenterol. 7, 205-214. https://doi.org/10.1007/s12328-014-0488-0
- Ding, T., Kabir, I., Li, Y., Lou, C., Yazdanyar, A., Xu, J., Dong, J., Zhou, H., Park, T., Boutjdir, M., et al. (2015). All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity. J. Lipid Res. 56, 537-545. https://doi.org/10.1194/jlr.M054627
- Dinur, T., Osiecki, K.M., Legler, G., Gatt, S., Desnick, R.J., and Grabowski, G.A. (1986). Human acid beta-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc. Natl. Acad. Sci. USA 83, 1660-1664. https://doi.org/10.1073/pnas.83.6.1660
- Duan, R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim. Biophys. Acta 1761, 281-291. https://doi.org/10.1016/j.bbalip.2006.03.007
- El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J.J., and Hannun, Y.A. (2000). Molecular cloning and characterization of a human mitochondrial ceramidase. J. Biol. Chem. 275, 21508-21513. https://doi.org/10.1074/jbc.M002522200
- Evangelisti, C., Evangelisti, C., Teti, G., Chiarini, F., Falconi, M., Melchionda, F., Pession, A., Bertaina, A., Locatelli, F., McCubrey, J.A., et al. (2014). Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 5, 7886-7901. https://doi.org/10.18632/oncotarget.2318
- Futerman, A.H., and Hannun, Y.A. (2004). The complex life of simple sphingolipids. EMBO Rep. 5, 777-782. https://doi.org/10.1038/sj.embor.7400208
- Futerman, A.H., and Riezman, H. (2005). The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312-318. https://doi.org/10.1016/j.tcb.2005.04.006
- Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.F. (2013). Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 33, 13-20.
- Garcia-Bernal, D., Redondo-Munoz, J., Dios-Esponera, A., Chevre, R., Bailon, E., Garayoa, M., Arellano-Sanchez, N., Gutierrez, N.C., Hidalgo, A., Garcia-Pardo, A., et al. (2013). Sphingosine-1- phosphate activates chemokine-promoted myeloma cell adhesion and migration involving alpha4beta1 integrin function. J. Pathol. 229, 36-48. https://doi.org/10.1002/path.4066
- Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23. https://doi.org/10.1007/978-1-4419-6741-1_1
- Grabowski, G.A. (1993). Gaucher disease. Enzymology, genetics, and treatment. Adv. Hum. Genet. 21, 377-441.
- Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322-330. https://doi.org/10.1038/nm823
- Gustafsson, K., Christensson, B., Sander, B., and Flygare, J. (2006). Cannabinoid receptor-mediated apoptosis induced by R(+)- methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol. Pharmacol. 70, 1612-1620. https://doi.org/10.1124/mol.106.025981
- Gustafsson, K., Sander, B., Bielawski, J., Hannun, Y.A., and Flygare, J. (2009). Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol. Cancer Res. 7, 1086-1098. https://doi.org/10.1158/1541-7786.MCR-08-0361
- Hammad, S.M., Pierce, J.S., Soodavar, F., Smith, K.J., Al Gadban, M.M., Rembiesa, B., Klein, R.L., Hannun, Y.A., Bielawski, J., and Bielawska, A. (2010). Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51, 3074-3087. https://doi.org/10.1194/jlr.D008532
- Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30. https://doi.org/10.1016/S1388-1981(03)00059-3
- Hanada, K., Hara, T., and Nishijima, M. (2000). Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409-8415. https://doi.org/10.1074/jbc.275.12.8409
- Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803-809. https://doi.org/10.1038/nature02188
- Hannun, Y.A. (1994). The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125-3128.
- Hayashi, Y., Okino, N., Kakuta, Y., Shikanai, T., Tani, M., Narimatsu, H., and Ito, M. (2007). Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase. J. Biol. Chem. 282, 30889-30900. https://doi.org/10.1074/jbc.M700832200
- Holliday, M.W., Jr., Cox, S.B., Kang, M.H., and Maurer, B.J. (2013). C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines. PLoS One 8, e74768. https://doi.org/10.1371/journal.pone.0074768
- Hu, X., Yang, D., Zimmerman, M., Liu, F., Yang, J., Kannan, S., Burchert, A., Szulc, Z., Bielawska, A., Ozato, K., et al. (2011). IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882-2891. https://doi.org/10.1158/0008-5472.CAN-10-2493
- Huang, W.C., Tsai, C.C., Chen, C.L., Chen, T.Y., Chen, Y.P., Lin, Y.S., Lu, P.J., Lin, C.M., Wang, S.H., Tsao, C.W., et al. (2011). Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 25, 3661-3673. https://doi.org/10.1096/fj.10-180190
- Huitema, K., van den Dikkenberg, J., Brouwers, J.F., and Holthuis, J.C. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33-44. https://doi.org/10.1038/sj.emboj.7600034
- Hwang, Y.H., Tani, M., Nakagawa, T., Okino, N., and Ito, M. (2005). Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem. Biophys. Res. Commun. 331, 37-42. https://doi.org/10.1016/j.bbrc.2005.03.134
- Ichikawa, S., and Hirabayashi, Y. (1998). Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8, 198-202. https://doi.org/10.1016/S0962-8924(98)01249-5
- Ishibashi, Y., Kohyama-Koganeya, A., and Hirabayashi, Y. (2013). New insights on glucosylated lipids: metabolism and functions. Biochim. Biophys. Acta 1831, 1475-1485. https://doi.org/10.1016/j.bbalip.2013.06.001
- Ito, M., Okino, N., and Tani, M. (2014). New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim. Biophys. Acta 1841, 682-691. https://doi.org/10.1016/j.bbalip.2013.09.008
- Itoh, M., Kitano, T., Watanabe, M., Kondo, T., Yabu, T., Taguchi, Y., Iwai, K., Tashima, M., Uchiyama, T., and Okazaki, T. (2003). Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin. Cancer Res. 9, 415-423.
- Jenkins, R.W., Canals, D., and Hannun, Y.A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal. 21, 836-846. https://doi.org/10.1016/j.cellsig.2009.01.026
- Kartal, M., Saydam, G., Sahin, F., and Baran, Y. (2011). Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr. Cancer 63, 637-644. https://doi.org/10.1080/01635581.2011.538485
- Kitatani, K., Idkowiak-Baldys, J., and Hannun, Y.A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20, 1010-1018. https://doi.org/10.1016/j.cellsig.2007.12.006
- Kiyota, M., Kuroda, J., Yamamoto-Sugitani, M., Shimura, Y., Nakayama, R., Nagoshi, H., Mizutani, S., Chinen, Y., Sasaki, N., Sakamoto, N., et al. (2013). FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 18, 1437-1446. https://doi.org/10.1007/s10495-013-0882-y
- Kluk, M.J., Ryan, K.P., Wang, B., Zhang, G., Rodig, S.J., and Sanchez, T. (2013). Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab. Invest. 93, 462-471. https://doi.org/10.1038/labinvest.2013.7
- Koch, J., Gartner, S., Li, C.M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996). Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J. Biol. Chem. 271, 33110-33115. https://doi.org/10.1074/jbc.271.51.33110
- Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B., and Kronke, M. (2006). Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem. 281, 13784-13793. https://doi.org/10.1074/jbc.M511306200
- Lafont, E., Milhas, D., Carpentier, S., Garcia, V., Jin, Z.X., Umehara, H., Okazaki, T., Schulze-Osthoff, K., Levade, T., Benoist, H., et al. (2010). Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ. 17, 642-654. https://doi.org/10.1038/cdd.2009.130
- Li, Q.F., Wu, C.T., Guo, Q., Wang, H., and Wang, L.S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem. Biophys. Res. Commun. 371, 159-162. https://doi.org/10.1016/j.bbrc.2008.04.037
- Liao, A., Broeg, K., Fox, T., Tan, S.F., Watters, R., Shah, M.V., Zhang, L.Q., Li, Y., Ryland, L., Yang, J., et al. (2011). Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118, 2793-2800. https://doi.org/10.1182/blood-2011-01-331447
- Liu, Y.Y., Han, T.Y., Giuliano, A.E., and Cabot, M.C. (1999). Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140-1146. https://doi.org/10.1074/jbc.274.2.1140
- Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., Lehman, A., Perrotti, D., Chen, C.S., Dalton, J.T., et al. (2008). FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111, 275-284. https://doi.org/10.1182/blood-2006-10-053884
- Liu, X., Ryland, L., Yang, J., Liao, A., Aliaga, C., Watts, R., Tan, S.F., Kaiser, J., Shanmugavelandy, S.S., Rogers, A., et al. (2010). Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116, 4192-4201. https://doi.org/10.1182/blood-2010-02-271080
- Maceyka, M., and Spiegel, S. (2014). Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67. https://doi.org/10.1038/nature13475
- Mao, C., and Obeid, L.M. (2008). Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta 1781, 424-434. https://doi.org/10.1016/j.bbalip.2008.06.002
- Matsuoka, Y., Nagahara, Y., Ikekita, M., and Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br. J. Pharmacol. 138, 1303-1312. https://doi.org/10.1038/sj.bjp.0705182
- Meng, A., Luberto, C., Meier, P., Bai, A., Yang, X., Hannun, Y.A., and Zhou, D. (2004). Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp. Cell Res. 292, 385-392. https://doi.org/10.1016/j.yexcr.2003.10.001
- Meyer zum Buschenfelde, C., Feuerstacke, Y., Gotze, K.S., Scholze, K., and Peschel, C. (2008). GM1 expression of non- Hodgkin's lymphoma determines susceptibility to rituximab treatment. Cancer Res. 68, 5414-5422. https://doi.org/10.1158/0008-5472.CAN-07-5601
- Miyaji, M., Jin, Z.X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S.B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E.T., et al. (2005). Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 202, 249-259. https://doi.org/10.1084/jem.20041685
- Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A., and Igarashi, Y. (2009). Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91, 784-790. https://doi.org/10.1016/j.biochi.2009.04.001
- Mondal, S., Mandal, C., Sangwan, R., Chandra, S., and Mandal, C. (2010). Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol. Cancer 9, 239.
- Morell, P., and Radin, N.S. (1970). Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A's by brain microsomes. J. Biol. Chem. 245, 342-350.
- Moylan, J.S., Smith, J.D., Wolf Horrell, E.M., McLean, J.B., Deevska, G.M., Bonnell, M.R., Nikolova-Karakashian, M.N., and Reid, M.B. (2014). Neutral sphingomyelinase-3 mediates TNFstimulated oxidant activity in skeletal muscle. Redox Biol. 2, 910- 920. https://doi.org/10.1016/j.redox.2014.07.006
- Mullen, T.D., Jenkins, R.W., Clarke, C.J., Bielawski, J., Hannun, Y.A., and Obeid, L.M. (2011). Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J. Biol. Chem. 286, 15929-15942. https://doi.org/10.1074/jbc.M111.230870
- Mullen, T.D., and Obeid, L.M. (2012). Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med. Chem. 12, 340-363. https://doi.org/10.2174/187152012800228661
- Neviani, P., Santhanam, R., Oaks, J.J., Eiring, A.M., Notari, M., Blaser, B.W., Liu, S., Trotta, R., Muthusamy, N., Gambacorti- Passerini, C., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J. Clin. Invest. 117, 2408-2421. https://doi.org/10.1172/JCI31095
- Nilsson, A., and Duan, R.D. (2006). Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 47, 154-171. https://doi.org/10.1194/jlr.M500357-JLR200
- Nishimura, H., Akiyama, T., Monobe, Y., Matsubara, K., Igarashi, Y., Abe, M., Sugihara, T., and Sadahira, Y. (2010). Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod. Pathol. 23, 439-449. https://doi.org/10.1038/modpathol.2009.194
- Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771. https://doi.org/10.1126/science.8456305
- Okazaki, T., Bell, R.M., and Hannun, Y.A. (1989). Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem. 264, 19076-19080.
- Park, J.H., and Schuchman, E.H. (2006). Acid ceramidase and human disease. Biochim. Biophys. Acta 1758, 2133-2138. https://doi.org/10.1016/j.bbamem.2006.08.019
- Park, J.W., Park, W.J., and Futerman, A.H. (2014). Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681. https://doi.org/10.1016/j.bbalip.2013.08.019
- Paugh, S.W., Paugh, B.S., Rahmani, M., Kapitonov, D., Almenara, J.A., Kordula, T., Milstien, S., Adams, J.K., Zipkin, R.E., Grant, S., et al. (2008). A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382-1391. https://doi.org/10.1182/blood-2008-02-138958
- Pavlova, E.V., Wang, S.Z., Archer, J., Dekker, N., Aerts, J.M., Karlsson, S., and Cox, T.M. (2013). B cell lymphoma and myeloma in murine Gaucher's disease. J. Pathol. 231, 88-97. https://doi.org/10.1002/path.4227
- Pippa, R., Dominguez, A., Christensen, D.J., Moreno-Miralles, I., Blanco-Prieto, M.J., Vitek, M.P., and Odero, M.D. (2014). Effect of FTY720 on the SET-PP2A complex in acute myeloid leukemia; SET binding drugs have antagonistic activity. Leukemia 28, 1915-1918. https://doi.org/10.1038/leu.2014.141
- Pitson, S.M. (2011). Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. 36, 97-107. https://doi.org/10.1016/j.tibs.2010.08.001
- Pyne, N.J., and Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489-503. https://doi.org/10.1038/nrc2875
- Pyne, S., Lee, S.C., Long, J., and Pyne, N.J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21, 14-21. https://doi.org/10.1016/j.cellsig.2008.08.008
- Qi, X., and Mochly-Rosen, D. (2008). The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J. Cell Sci. 121, 804-813. https://doi.org/10.1242/jcs.024653
- Rodriguez-Cuenca, S., Barbarroja, N., and Vidal-Puig, A. (2015). Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50. https://doi.org/10.1016/j.bbalip.2014.09.021
- Ryland, L.K., Doshi, U.A., Shanmugavelandy, S.S., Fox, T.E., Aliaga, C., Broeg, K., Baab, K.T., Young, M., Khan, O., Haakenson, J.K., et al. (2013). C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 8, e84648. https://doi.org/10.1371/journal.pone.0084648
- Saba, J.D., and de la Garza-Rodea, A.S. (2013). S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta 1831, 167-175. https://doi.org/10.1016/j.bbalip.2012.06.009
- Saddoughi, S.A., Garrett-Mayer, E., Chaudhary, U., O'Brien, P.E., Afrin, L.B., Day, T.A., Gillespie, M.B., Sharma, A.K., Wilhoit, C.S., Bostick, R., et al. (2011). Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin. Cancer Res. 17, 6097-6105. https://doi.org/10.1158/1078-0432.CCR-11-0930
- Saddoughi, S.A., and Ogretmen, B. (2013). Diverse functions of ceramide in cancer cell death and proliferation. Adv. Cancer Res. 117, 37-58. https://doi.org/10.1016/B978-0-12-394274-6.00002-9
- Savic, R., He, X., Fiel, I., and Schuchman, E.H. (2013). Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One 8, e65620. https://doi.org/10.1371/journal.pone.0065620
- Savic, R., and Schuchman, E.H. (2013). Use of acid sphingomyelinase for cancer therapy. Adv. Cancer Res. 117, 91-115. https://doi.org/10.1016/B978-0-12-394274-6.00004-2
- Sawai, H., Domae, N., Nagan, N., and Hannun, Y.A. (1999). Function of the cloned putative neutral sphingomyelinase as lysoplatelet activating factor-phospholipase C. J. Biol. Chem. 274, 38131-38139. https://doi.org/10.1074/jbc.274.53.38131
- Schulze, H., and Sandhoff, K. (2011). Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 3.
- Semac, I., Palomba, C., Kulangara, K., Klages, N., van Echten-Deckert, G., Borisch, B., and Hoessli, D.C. (2003). Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res. 63, 534-540.
- Senchenkov, A., Litvak, D.A., and Cabot, M.C. (2001). Targeting ceramide metabolism--a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347-357. https://doi.org/10.1093/jnci/93.5.347
- Serra, M., and Saba, J.D. (2010). Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50, 349-362. https://doi.org/10.1016/j.advenzreg.2009.10.024
- Shakor, A.B., Taniguchi, M., Kitatani, K., Hashimoto, M., Asano, S., Hayashi, A., Nomura, K., Bielawski, J., Bielawska, A., Watanabe, K., et al. (2011). Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J. Biol. Chem. 286, 36053-36062. https://doi.org/10.1074/jbc.M111.228593
- Shakor, A.B., Atia, M., Ismail, I.A., Alshehri, A., El-Refaey, H., Kwiatkowska, K., and Sobota, A. (2014). Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochim. Biophys. Acta 1841, 1672-1682. https://doi.org/10.1016/j.bbalip.2014.09.006
- Shammas, M.A., Neri, P., Koley, H., Batchu, R.B., Bertheau, R.C., Munshi, V., Prabhala, R., Fulciniti, M., Tai, Y.T., Treon, S.P., et al. (2006). Specific killing of multiple myeloma cells by (-)- epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood 108, 2804-2810. https://doi.org/10.1182/blood-2006-05-022814
- Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24-41. https://doi.org/10.1016/j.jbior.2014.10.002
- Siow, D., and Wattenberg, B. (2011). The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit. Rev. Biochem. Mol. Biol. 46, 365-375. https://doi.org/10.3109/10409238.2011.580097
- Tafesse, F.G., Ternes, P., and Holthuis, J.C. (2006). The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421-29425. https://doi.org/10.1074/jbc.R600021200
- Tani, M., and Kuge, O. (2009). Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem. Biophys. Res. Commun. 381, 328-332. https://doi.org/10.1016/j.bbrc.2009.02.063
- Taniguchi, M., and Okazaki, T. (2014). The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration- from cell and animal models to human disorders. Biochim. Biophys. Acta 1841, 692-703. https://doi.org/10.1016/j.bbalip.2013.12.003
- Taniguchi, M., Kitatani, K., Kondo, T., Hashimoto-Nishimura, M., Asano, S., Hayashi, A., Mitsutake, S., Igarashi, Y., Umehara, H., Takeya, H., et al. (2012). Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem. 287, 39898-39910. https://doi.org/10.1074/jbc.M112.416552
- Taouji, S., Higa, A., Delom, F., Palcy, S., Mahon, F.X., Pasquet, J.M., Bosse, R., Segui, B., and Chevet, E. (2013). Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J. Biol. Chem. 288, 17190-17201. https://doi.org/10.1074/jbc.M112.409185
- Tettamanti, G., Bassi, R., Viani, P., and Riboni, L. (2003). Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423- 437. https://doi.org/10.1016/S0300-9084(03)00047-6
- Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W. (1998). Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. USA 95, 3638- 3643. https://doi.org/10.1073/pnas.95.7.3638
- Truman, J.P., Garcia-Barros, M., Obeid, L.M., and Hannun, Y.A. (2014). Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta 1841, 1174- 1188. https://doi.org/10.1016/j.bbalip.2013.12.013
- Tsukamoto, S., Hirotsu, K., Kumazoe, M., Goto, Y., Sugihara, K., Suda, T., Tsurudome, Y., Suzuki, T., Yamashita, S., Kim, Y., et al. (2012). Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cdelta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem. J. 443, 525-534. https://doi.org/10.1042/BJ20111837
- Turzanski, J., Grundy, M., Shang, S., Russell, N., and Pallis, M. (2005). P-glycoprotein is implicated in the inhibition of ceramideinduced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp. Hematol. 33, 62-72. https://doi.org/10.1016/j.exphem.2004.10.005
- Vacaru, A.M., Tafesse, F.G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J.F., Somerharju, P., Rabouille, C., and Holthuis, J.C. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013- 1027. https://doi.org/10.1083/jcb.200903152
- Wallington-Beddoe, C.T., Hewson, J., Bradstock, K.F., and Bendall, L.J. (2011). FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells. Autophagy 7, 707-715. https://doi.org/10.4161/auto.7.7.15154
- Wallington-Beddoe, C.T., Don, A.S., Hewson, J., Qiao, Q., Papa, R.A., Lock, R.B., Bradstock, K.F., and Bendall, L.J. (2012). Disparate in vivo efficacy of FTY720 in xenograft models of Philadelphia positive and negative B-lineage acute lymphoblastic leukemia. PLoS One 7, e36429. https://doi.org/10.1371/journal.pone.0036429
- Wallington-Beddoe, C.T., Powell, J.A., Tong, D., Pitson, S.M., Bradstock, K.F., and Bendall, L.J. (2014). Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res. 74, 2803-2815.
- Wang, Q., Zou, J., Zhang, X., Mu, H., Yin, Y., and Xie, P. (2014). Glucosylceramide synthase promotes Bcl-2 expression via the ERK signaling pathway in the K562/A02 leukemia drug-resistant cell line. Int. J. Hematol. 100, 559-566. https://doi.org/10.1007/s12185-014-1679-7
- Watanabe, M., Kitano, T., Kondo, T., Yabu, T., Taguchi, Y., Tashima, M., Umehara, H., Domae, N., Uchiyama, T., and Okazaki, T. (2004). Increase of nuclear ceramide through caspase- 3-dependent regulation of the "sphingomyelin cycle" in Fasinduced apoptosis. Cancer Res. 64, 1000-1007. https://doi.org/10.1158/0008-5472.CAN-03-1383
- Watters, R.J., Fox, T.E., Tan, S.F., Shanmugavelandy, S., Choby, J.E., Broeg, K., Liao, J., Kester, M., Cabot, M.C., Loughran, T.P., et al. (2013). Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk. Lymphoma 54, 1288-1296. https://doi.org/10.3109/10428194.2012.752485
- Wu, B.X., Rajagopalan, V., Roddy, P.L., Clarke, C.J., and Hannun, Y.A. (2010). Identification and characterization of murine mitochondria- associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J. Biol. Chem. 285, 17993-18002. https://doi.org/10.1074/jbc.M110.102988
- Yamaji, T., and Hanada, K. (2014). Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 9, e88124. https://doi.org/10.1371/journal.pone.0088124
- Yamaji, T., and Hanada, K. (2015). Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16, 101-122. https://doi.org/10.1111/tra.12239
- Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H., and Okazaki, T. (2004). Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase- defective lymphoid cells. J. Biol. Chem. 279, 18688-18693. https://doi.org/10.1074/jbc.M401205200
- Yildiz, Y., Matern, H., Thompson, B., Allegood, J.C., Warren, R.L., Ramirez, D.M., Hammer, R.E., Hamra, F.K., Matern, S., and Russell, D.W. (2006). Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J. Clin. Invest. 116, 2985-2994. https://doi.org/10.1172/JCI29224
- Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948. https://doi.org/10.1158/1078-0432.CCR-12-0655
- Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350. https://doi.org/10.1083/jcb.200705060
- Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948. https://doi.org/10.1158/1078-0432.CCR-12-0655
- Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350. https://doi.org/10.1083/jcb.200705060
- Zembruski, N.C., Nguyen, C.D., Theile, D., Ali, R.M., Herzog, M., Hofhaus, G., Heintz, U., Burhenne, J., Haefeli, W.E., and Weiss, J. (2013). Liposomal sphingomyelin influences the cellular lipid profile of human lymphoblastic leukemia cells without effect on P-glycoprotein activity. Mol. Pharm. 10, 1020-1034. https://doi.org/10.1021/mp300485j
- Zhang, Y.Y., Xie, K.M., Yang, G.Q., Mu, H.J., Yin, Y., Zhang, B., and Xie, P. (2011). The effect of glucosylceramide synthase on P-glycoprotein function in K562/AO2 leukemia drug-resistance cell line. Int. J. Hematol. 93, 361-367. https://doi.org/10.1007/s12185-011-0798-7
- Zhang, P., Chen, Y., Cheng, Y., Hertervig, E., Ohlsson, L., Nilsson, A., and Duan, R.D. (2014). Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice. Am. J. Physiol. Gastrointest Liver Physiol. 306, G903-908. https://doi.org/10.1152/ajpgi.00319.2013
- Zumbansen, M., and Stoffel, W. (2002). Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol. Cell Biol. 22, 3633-3638. https://doi.org/10.1128/MCB.22.11.3633-3638.2002
피인용 문헌
- Plasma and ovarian tissue sphingolipids profiling in patients with advanced ovarian cancer vol.147, pp.1, 2017, https://doi.org/10.1016/j.ygyno.2017.07.143
- Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0177805
- Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells vol.7, 2016, https://doi.org/10.3389/fendo.2016.00067
- Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia vol.14, pp.11, 2016, https://doi.org/10.3390/md14110205
- ACER3 supports development of acute myeloid leukemia vol.478, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.07.099
- Sphingomyelin generated by sphingomyelin synthase 1 is involved in attachment and infection with Japanese encephalitis virus vol.6, pp.1, 2016, https://doi.org/10.1038/srep37829
- Regulation of membrane KCNQ1/KCNE1 channel density by sphingomyelin synthase 1 vol.311, pp.1, 2016, https://doi.org/10.1152/ajpcell.00272.2015
- Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study vol.0, pp.0, 2018, https://doi.org/10.1515/cclm-2018-0509
- Sphingosine kinase 1 overexpression contributes to sunitinib resistance in clear cell renal cell carcinoma pp.2162-402X, 2018, https://doi.org/10.1080/2162402X.2018.1502130
- Ceramide synthase-6 confers resistance to chemotherapy by binding to CD95/Fas in T-cell acute lymphoblastic leukemia vol.9, pp.9, 2018, https://doi.org/10.1038/s41419-018-0964-4
- Holotoxin A1 Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells vol.16, pp.4, 2018, https://doi.org/10.3390/md16040123
- MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma vol.8, pp.15, 2015, https://doi.org/10.18632/oncotarget.15334
- Wide-transcriptome analysis and cellularity of bone marrow CD34+/lin- cells of patients with chronic-phase chronic myeloid leukemia at diagnosis vs. 12 months of first-line nilotinib treatment vol.21, pp.1, 2015, https://doi.org/10.3233/cbm-170209
- Ceramide generation as a novel biological mechanism for chemo-preventive and cytotoxic effects of hesperidin on HT-144 melanoma cells vol.7, pp.4, 2015, https://doi.org/10.1016/j.bjbas.2018.07.008
- Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer vol.17, pp.1, 2015, https://doi.org/10.1158/1535-7163.mct-17-0173
- Ceramide Suppresses Influenza A Virus Replication In Vitro vol.93, pp.7, 2015, https://doi.org/10.1128/jvi.00053-19
- Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia vol.3, pp.17, 2019, https://doi.org/10.1182/bloodadvances.2018021295
- Deficiency of sphingomyelin synthase 2 prolongs survival by the inhibition of lymphoma infiltration through ICAM‐1 reduction vol.34, pp.3, 2015, https://doi.org/10.1096/fj.201901783rr
- Ceramide and Sphingosine 1-Phosphate in Liver Diseases vol.43, pp.5, 2020, https://doi.org/10.14348/molcells.2020.0054
- 8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells vol.8, pp.11, 2015, https://doi.org/10.3390/biomedicines8110506
- Cytokine Levels at Birth in Children Who Developed Acute Lymphoblastic Leukemia vol.30, pp.8, 2015, https://doi.org/10.1158/1055-9965.epi-20-1704
- MLL-AF4+ infant leukemia: a microRNA affair vol.138, pp.21, 2015, https://doi.org/10.1182/blood.2021012818