DOI QR코드

DOI QR Code

Effects of Baffle Structure Variation on Heat Transfer Performance in a Shell-Tube Heat Exchanger

배플 구조변경이 Shell-Tube 열교환기의 열전달성능에 미치는 영향

  • Hou, Rong-Rong (Dept. of Mechanical Engineering, Graduate School, Gachon Univ.) ;
  • Cho, Joeng-Kwon (Dept. of Mechanical Engineering, Graduate School, Gachon Univ.) ;
  • Yoon, Jun-Kyu (Dept. of Mechanical Engineering, Gachon Univ.) ;
  • Lim, Jong-Han (Dept. of Mechanical Engineering, Gachon Univ.)
  • 후영영 (가천대학교 대학원 기계공학과) ;
  • 조정권 (가천대학교 대학원 기계공학과) ;
  • 윤준규 (가천대학교 기계공학과) ;
  • 임종한 (가천대학교 기계공학과)
  • Received : 2015.01.19
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

Shell-tube heat exchanger is widely applied in industrial field by easily manufacturing as to various size and flow patterns. In this study, by changing baffle's cut direction, tilt angle and rotational angle as well as by using SST (Shear Stress Transport) $k-{\omega}$ turbulence model in ANSYS FLUENT v.14, the heat transfer rate and pressure drop characteristics of inner shell will be analyzed to improve heat transfer ability. As a result of analysis, heat transfer performance according to cut direction of baffle has been improved with vertical model B and angle $45^{\circ}$ model C than horizontal model A. In addition, the tilt $10^{\circ}$ of the baffle and rotational angle $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$ of model D showed better result in heat transfer rate and pressure drop.

셀-튜브 열교환기는 다양한 크기와 유동형태로 쉽게 제작이 용이함으로 산업분야에 널리 이용된다. 본 연구에서는 열교환기의 열전달성능을 도모하고자 배플의 컷 방향, 배플의 경사각 및 배플의 회전각 등을 변경하여 ANSYS FLUENT v.14를 사용한 SST $k-{\omega}$ 난류모델을 적용하여 쉘 내부의 열전달률 및 압력강하 특성을 해석하였다. 그 해석결과로 배플의 컷 방향은 수평형 모델 A보다 수직형 모델 B 및 각도 $45^{\circ}$형 모델 C가 이 열전달성능이 향상되는 것으로 나타났다. 또한 배플의 경사각을 $10^{\circ}$로 적용한 경우와 배플의 회전각을 $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$로 배치한 모델 D의 경우가 열전달률 및 압력강하 특성이 우수한 결과를 나타냈다.

Keywords

References

  1. Deng. S.J., "Shell and tube heat exchangers to improve heat transfer performance of the way," Chinese Journal of Chemical Engineering, vol.20, no.2, pp.30-36, 1992.
  2. Ichiro Tanasawa, "Heat full latest trends in technology research and development," Japanese of Piping Technology, vol.30, no.7, pp.51-56, 1988.
  3. M. Z. Shi, "Principle and design of heat exchangers", Southeast university press IV, pp. 1-6. 2009.
  4. G. N. Oh, Y. D. Jun and K. B. Lee, "Research of heat transfer characteristics with baffle parameters in shell and tube heat exchanger", Society of Air-conditioning and Refrigerating Engineers of Korea, vol. 22, no.9, pp.599-604, 2010.
  5. J. A. Hong, J. D. Jun and K. B. Lee, "A simulation do single-tube heat exchanger with annular baffles", Society of Air-conditioning and Refrigerating Engineers of Korea, pp. 1029-1034. 2012.
  6. Y. H. Shin, H. D. Jeong, J. H. Lee and H. S. Chung, "A numerical study of heat transfer and flow characteristics in shell and tube heat exchanger", Society of Air-conditioning and Refrigerating Engineers of Korea, pp.1070-1073. 2011.
  7. A. Tandiroglu, "Effect of flow geometry parameters on transient heat transfer for turbulent flow in a circular tube with baffle inserts", International Journal of Heat and Mass Transfer, vol.49, pp. 1559-567, 2006. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.01.018
  8. Thundil Karuppa Raj, R. and Srikanth GANNE, "Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow", Thermal Science, vol.16, no.4, pp. 1165-1174, 2012. DOI: http://dx.doi.org/10.2298/TSCI110330118R
  9. J. E Bardian, P. G. Huang and T. J. Coakley, "Turbulence Modeling Validation," ALAA, pp. 98-212. 1997. DOI: http://dx.doi.org/10.2514/6.1997-2121
  10. ANSYS Fluent Theory Guid, ANSYS Fluent v.14. 2013.
  11. J. Y. Park and J. H. Baek," A comparative study of PISO, SIMPLE, SIPMLE-C algorithms in 3-dimensional generalized coordinate systems", Trans. Korean Society for Computational Fluids Engineering, vol.1, pp. 26-34. 1996.