DOI QR코드

DOI QR Code

스케일 공간 도함수를 이용한 강인한 기술자 생성 기법

A Method of Constructing Robust Descriptors Using Scale Space Derivatives

  • 박종승 (서강대학교 컴퓨터공학과) ;
  • 박운상 (서강대학교 컴퓨터공학과)
  • 투고 : 2015.02.27
  • 심사 : 2015.03.24
  • 발행 : 2015.06.15

초록

멀티미디어 데이터의 생산과 소비가 증가함에 따라 이를 효과적으로 처리하고 관리하는 데 필요한 이미지 검색 기술의 필요성이 점차 커지고 있다. 본 논문에서는 이미지 검색 기법 중 최근 주목 받고 있는 특징점 기반의 이미지 검색 방법에서 기존 보다 강인한 기술자를 생성하는 방법을 제안한다. 즉, 스케일 공간 이미지에 더하여 1차 및 2차 미분 이미지를 기술자 생성에 이용함으로써 기술자의 변별력을 향상시키도록 한다. 제시되는 기술자는 다양한 영상 변환을 포함하는 공용 데이터 셋을 이용하여 성능 평가를 수행하였다. 새로운 기술자는 길이가 약간 증가하는 단점이 있으나 특징점 매칭에 있어서 현저한 성능 향상을 보인다.

Requirement of effective image handling methods such as image retrieval has been increasing with the rising production and consumption of multimedia data. In this paper, a method of constructing more effective descriptor is proposed for robust keypoint based image retrieval. The proposed method uses information embedded in the first order and second order derivative images, in addition to the scale space image, for the descriptor construction. The performance of multi-image descriptor is evaluated in terms of the similarities in keypoints with a public domain image database that contains various image transformations. The proposed descriptor shows significant improvement in keypoint matching with minor increase of the length.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. M. S. Lew, N. Sebe, C. Djeraba and R. Jain, "Content-based Multimedia Information Retrieval: State of the Art and Challenges," ACM Transactions on Multimedia Computing, Communications, and Applications, pp. 1-19, 2006.
  2. S. F. Chang, J. R. Smith, M. Beigi and A. Benitez, Visual Information Retrieval from Large Distributed Online Repositories, "Communications of the ACM, Vol. 40, No. 12, pp. 63-71, 1997. https://doi.org/10.1145/265563.265573
  3. D. G. Lowe, "Distinctive Image Features from Scale-invariant Keypoints," International Journal of Computer Vision, Vol. 60, No. 1, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  4. H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up Robust Features," European Conference on Computer Vision, pp. 404-417, 2006.
  5. S. Leutenegger, M. Chli and R. Y. Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints," IEEE International Conference on Computer Vision, pp. 2548-2555, 2011.
  6. S. Lazebnik, C. Schmid and J. Ponce, "A Sparse Texture Representation Using Local Affine Regions," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp. 1265-1278, 2005. https://doi.org/10.1109/TPAMI.2005.151
  7. B. Fan, F. Wu, and Z. Hu, "Rotationally Invariant Descriptors Using Intensity Order Pooling," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 10, pp. 2031-2045, 2012. https://doi.org/10.1109/TPAMI.2011.277
  8. B. Cavusoglu, "Multiscale Texture Retrieval Based on Low-dimensional and Rotation-invariant Features of Curvelet Transform," EURASIP Journal on Image and Video Processing, Vol. 22, pp. 1-19, 2014.
  9. S. Kong and D. Wang, "Multi-Level Feature Descriptor for Robust Texture Classification via Locality-Constrained Collaborative Strategy, Computing Research Repository, pp. 1-13, 2012.
  10. J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: a Comprehensive Study, International Journal of Computer Vision, Vol. 73, pp. 213-238, 2007. https://doi.org/10.1007/s11263-006-9794-4
  11. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky and L. Van Gool, "A Comparison of Affine Region Detectors," International Journal of Computer Vision, Vol. 65, No. 1-2, pp. 43-72, 2005. https://doi.org/10.1007/s11263-005-3848-x
  12. Open Computer Vision (OpenCV) Library, http://opencv.org/