DOI QR코드

DOI QR Code

CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis

  • 권양수 (한국과학기술원 건설 및 환경공학과) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 황주영 (한국과학기술원 건설 및 환경공학과) ;
  • 김진국 (POSCO 철강솔루션센터) ;
  • 김종민 (POSCO 철강솔루션센터)
  • 투고 : 2015.02.01
  • 심사 : 2015.02.13
  • 발행 : 2015.04.30

초록

본 논문에서는 CFT 구조의 강관과 내부 충전 콘크리트 간 복합거동을 유한요소해석 시 적절하게 반영하기 위해 강관과 콘크리트 간 부착 슬립관계 묘사를 위한 알고리즘을 제시하였다. 내부 충전 콘크리트에 축방향 하중 발생 시, 강관과 콘크리트 간 마찰로 인해 강관으로 하중이 전달되며, 이에 따른 강관 슬립량과 힘의 평형관계를 통해 등가강성을 통해 부착관계를 파악할 수 있다. 실제 원형 CFT 부재의 부착응력 실험을 통해 측정된 수직 및 수평 방향 응력 분포 결과와 제안된 해석 기법을 통해 산정된 응력 분포의 비교를 통해 제안된 해석 기법의 타당성을 검증하였다. 또한 비선형 유한요소해석 시 강관과 콘크리트의 부착 거동 묘사에 따라 CFT 기둥의 거동 특성에 영향을 미치게 되므로 축방향 하중이 작용하는 CFT 부재 실험 결과와 제안된 부착-슬립 모델을 반영한 유한요소해석 결과의 하중-변위 곡선 관계 비교를 통해 제안된 기법의 적합성을 검증하였다.

CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

키워드

참고문헌

  1. ABAQUS (2013) Abaqus Analysis User's Manual version 6.13., Dassault Systemes Simulia Corp.
  2. ACI (2008) Building Code Requirements for Structural Concrete and Commentary, Farmington Hills, Michigan, p.503.
  3. AISC (2005) Specifications for Structural Steel Buildings, Chicago, IL, p.460.
  4. Baltay, P., Gjelsvik, A. (1990) Coefficient of Friction for Steel on Concrete at High Normal Stress, J. Mater. Civil Eng. ASCE, 2(1), pp.46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  5. CEB-FIP (1990) CEB-FIP Model Code 90, Cornite Euro International Du Beton, pp.82-87.
  6. Eurocode 4, EN 1994-1-1 (2004) Design of Composite Steel and Concrete Structures, Part 1.1 General Rules and Rules for Buildings, European Union, p.118.
  7. Fung, Y.C., Tong, P. (2001) Classical and Computational Solid Mechanics, World Scientific, Singapore, p.940.
  8. Goto, Y., Kumar, G.P., Kawanishi N. (2010) Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete, J. Struct. Eng. ASCE, 136, pp.1413-1422. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000240
  9. Hu, H.T., Huang, C.S., Wu, M.H., Wu, Y.M. (2003) Nonlinear Analysis of Axial Loaded Concrete-filled Tube Columns with Confinement Effect, J. Struct. Eng. ASCE, 129(10), pp.1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  10. Huang, C.S., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K.C., Weng, Y.T., Wang, S.H., Wu, M.-H. (2002) Axial Load Behavior of Stiffened Concrete Filled Steel Columns, J. Struct. Eng. ASCE,, 128(9), pp.1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  11. Kwak, H.G. (1994) Development of an Analytic Algorithm to Simulate Bond-Slip Effect, J. Korean Soc. Civil Eng., 14, pp.711-719.
  12. Kwak, H.G., Filippou, F.C. (1990) Finite Element Analysis of Reinforcement Concrete Structures under Monotonic Loads, Report No. UCB/SEMM- 90/14, Univ. of California at Berkeley, Berkeley, p.120.
  13. Kwon, S.H., Kim, J.K. (2001) Bond Stress in Concrete Filled Steel Tubular Column, J. Korea Concr. Inst., 13(2), pp.93-98. https://doi.org/10.22636/JKCI.2001.13.2.93
  14. Lee, H.L., Kim, H.J., Hwang, W.S. (2011) Behavior of the Foundation of Concrete Filled Tubular Pier, J. Comput. Struct. Eng. Inst. Korea, 24(5), pp.491-498.
  15. Lee, J., Fenves, G.L. (1998) Plastic-damage Model for Cyclic Loading of Concrete Structures, J. Eng. Mech., ASCE, 124(8), pp.892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  16. Moon, J., Ko, H., Lee, H.E. (2012) Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT), J. Korean Soc. Civil Eng., 32(3A), pp.139-148. https://doi.org/10.12652/Ksce.2012.32.4C.139
  17. Schneider, S.P. (1998) Axially Loaded Concretefilled Steel Tubes, J. Struct. Eng. ASCE, 124(10), pp.1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)