DOI QR코드

DOI QR Code

SI 엔진의 정상유동장치에서 충격식 스월미터와 입자영상유속계의 스월비 측정에 대한 비교 연구

Comparison of Swirl Ratio Measured by Impulse Swirl Meter and Particle Image Velocimetry in a Steady Flow Bench of SI Engine

  • Lee, Sukjong (Intech Systems) ;
  • Ohm, In Yong (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Sung, Jaeyong (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
  • 투고 : 2014.07.10
  • 심사 : 2015.05.08
  • 발행 : 2015.05.31

초록

본 연구에서는 SI 엔진의 정상유동장치에서 충격식 스월미터로 측정한 스월비와 PIV(입자영상유속계) 속도장을 적분하여 구한 스월비를 비교 고찰하였다. PIV 속도장으로부터 스월비를 산출하는 방식에 있어서는 토크를 실린더의 기하학적 중심과 스월 중심에서 각각 계산하여 비교하였다. 또한, 정상유동장치에서 토크의 측정 위치를 변화하여 그에 따른 영향도 고찰하였다. 그 결과, 와류가 안정화되지 못한 상류에서는 충격식 스월미터의 측정값이 PIV로 측정한 값보다 크게 나타났다. PIV 측정에 있어서는 유동 상류에서 실린더 중심을 기준으로 산출한 값이 스월 중심으로 산출한 값보다 작게 나타났다. 측정위치가 하류로 이동하여 스월이 안정화되면서 측정방법에 따른 차이점이 줄어든다.

The swirl ratio in a SI engine is investigated in a steady flow bench according to the measurement methods: an impulse swirl meter and particle image velocimetry (PIV). When measuring the swirl ratio using the PIV, the torque is evaluated based on the cylinder center and swirl center, respectively. The position of the measurement plane is considered. As a result, in the upstream, the swirl ratio measured by the impulse swirl meter is estimated to be larger than that from the PIV measurements due to the unstable vortex motions. Regarding the PIV measurements, the swirl ratio based on the cylinder center has been found to be lower than that based on the swirl center. On the other hand, the difference in swirl ratio has decreased smaller as the measurement plane moved downstream due to the stabilization of the vortex motion.

키워드

참고문헌

  1. S. J. Lee, J. T. Lee, and S. Y. Lee, "The influence of swirl flow characteristics on turbulent burning speed," Transactions of the Korea Society of Mechanical Engineers, vol. 20, no. 1, pp. 306-310, 1992.
  2. I. Y. Ohm and Y. S. Cho, "In-cylinder fuel behavior according to fuel injection timing and port characteristics in an SI engine : Part III-with high swirl," Journal of the Korean Society of Automotive Engineers, vol. 9, no. 3, pp. 18-26, 2001.
  3. B. H. Kim, K. Park, S. S. Lee, and N. W. Sung, "The effect of swirl flow on combustion characteristics in a marin diesel engine," Journal of the Korean Society of Marine Engineering, vol. 24, no. 2, pp. 38-49, 2000.
  4. C. H. Cheon, B. H. Lee, and H. S. Kim, "A numerical study on characteristics of tumble and internal flow for marine engine," Proceedings of the Korean Society of Marine Engineering Spring Conference, pp. 89-92, 2007.
  5. I. Y. Ohm, K. S. Jeong, and I. S. Jeung, "Fuel behavior in the cylinder during the intake process," Journal of the Korean Society of Automotive Engineers, vol. 7, no. 4, pp.54-59, 1999.
  6. I. Y. Ohm and C. J. Park, "In-cylinder intake flow characteristics according to inlet valve angle", Transactions of the Korean Society of Automotive Engineers, vol. 14, no. 3, pp. 142-149, 2006.
  7. S. T. Kwon, X. B. Jiang, W. H. Jo, C. J. Park, and I. Y. Ohm, "In steady flow bench flow measurement using PIV," Proceedings of the 7th National Congress on Fluids Engineering, pp. 29-31, 2012.
  8. S. Kim, J. Sung, and M. H. Lee, "Turbulence characteristics in a circular open channel by PIV measurements," Journal of the Korean Society of Marine Engineering, vol. 35, no. 7, pp. 930-937, 2011. https://doi.org/10.5916/jkosme.2011.35.7.930
  9. S. J. Lee, I. Y. Ohm, J. Y. Sung, and M. H. Lee, "A study on swirl ratio according to the measurement position in a steady flow bench of SI engine," Proceedings of the Korean Society of Visualization Fall Conference, pp. 134-137, 2013.
  10. A. E. Perry and M. S. Chong, "A description of eddying motions and flow patterns using critical-point concepts", Annual Review of Fluid Mechanics, vol. 19, pp. 125-155, 1987. https://doi.org/10.1146/annurev.fl.19.010187.001013