DOI QR코드

DOI QR Code

Effect of Precursor Concentration on the Structural, Morphological, and Optical Properties of TiO2 Nano-Flowers

  • Anwar, M.S. (School of Materials Science and Engineering, Changwon National University) ;
  • Danish, Rehan (School of Materials Science and Engineering, Changwon National University) ;
  • Park, Keun Young (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
  • Received : 2015.03.24
  • Accepted : 2015.05.07
  • Published : 2015.05.27

Abstract

The effect of precursor concentration on the structural, morphological, and optical properties of $TiO_2$nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of $TiO_2$nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.

Keywords

References

  1. D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. Ying, P. G. Li, B. Q. Lu, H. L. Shen, J. Alloys Compd., 582, 236 (2014). https://doi.org/10.1016/j.jallcom.2013.08.062
  2. Y. Li, Q. Ma, J. Han, L. Ji, J. Wang, J. Chen, Y. Wang, Appl. Surf. Sci., 297, 103 (2014). https://doi.org/10.1016/j.apsusc.2014.01.086
  3. Q. Gao, X. M. Wu, Y. M. Fan, X. Y. Zhou, J. Alloys Compd., 579, 322 (2013). https://doi.org/10.1016/j.jallcom.2013.06.071
  4. P. Soundarrajan, K. Sankarasubramanian, T. Logu, K. Sethuraman, K. Ramamurthi, Mater. Lett., 116, 191 (2014). https://doi.org/10.1016/j.matlet.2013.11.026
  5. A. M. Selman, Z. Hassan, Optical Mater., 44, 37 (2015). https://doi.org/10.1016/j.optmat.2015.02.028
  6. T. Tachikawa, Y. Takai, S. Tojo, M. Fujitsuka, H. Irie, K. Hashimoto, T. Majima, J. Phys. Chem. B, 110(26), 13158 (2006). https://doi.org/10.1021/jp0620217
  7. C. Kormann, D. Bahnemann, M. Hoffmann, J. Phys. Chem., 92(18), 5196 (1988). https://doi.org/10.1021/j100329a027
  8. E. Piera, M. I. Tejedor, M. Zorn, M. Anderson, Appl. Catalysis B: Environmental., 46, 671 (2003). https://doi.org/10.1016/S0926-3373(03)00288-1
  9. M. Anpo, Stud. Surf. Sci. Catal., 130, 157 (2000). https://doi.org/10.1016/S0167-2991(00)80952-0
  10. D. N. Liu, G. H. He, L. Zhu, W. Y. Zhou, Y. H. Xu, Appl. Surf. Sci., 258, 8055 (2012). https://doi.org/10.1016/j.apsusc.2012.04.171
  11. H. J. Song, T. Chen, Y. L. Sun, X. Q. Zhang, X. H. Jia, Ceram. Int., 40, 11015 (2014). https://doi.org/10.1016/j.ceramint.2014.03.108
  12. H. P. Xua, J. H. Liao, S. Yuan, Y. Zhao, M. H. Zhang, Z. Y. Wang, L. Y. Shi, Mater. Res. Bull., 51, 326 (2014). https://doi.org/10.1016/j.materresbull.2013.12.052
  13. D. Aphairaj, T. Wirunmongkol, S. Niyomwas, S. Pavasupree, P. Limsuwan, Ceram. Int., 40, 9241 (2014). https://doi.org/10.1016/j.ceramint.2014.01.145
  14. J. Y. Chen, H. M. Zhang, P. Liu, Y. Wang, X. L. Liu, G. Y. Li, T. C. An, H. J. Zhao, J. Colloid Int. Sci., 429, 53 (2014). https://doi.org/10.1016/j.jcis.2014.05.012
  15. Y. Jing, L. S. Li, Q. Y. Zhang, P. Lu, P. H. Liu, X. H. Lu, J. Hazard. Mater., 189, 40 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.132
  16. M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutieiyrrez, M. P. Morales, I. B. Bohm, J. T. Heverhagen, D. Prosperi, W. J. Parak, Chem. Soc. Rev., 41, 4306 (2012). https://doi.org/10.1039/c2cs15337h
  17. S. F. Ou, H. H. Chou, C. S. Lin, C. J. Shih, K. K. Wang, Y. N. Pan, Appl. Surf. Sci., 258, 6190 (2012). https://doi.org/10.1016/j.apsusc.2012.02.109
  18. I. S. Grover, S. Singh, B. Pal, Appl. Surf. Sci., 280, 366 (2013). https://doi.org/10.1016/j.apsusc.2013.04.163
  19. W. L. Guo, X. L. Liu, P. W. Huo, X. Gao, D. Wu, Z. Y. Lu, Y. S. Yan, Appl. Surf. Sci., 258, 6891 (2012). https://doi.org/10.1016/j.apsusc.2012.03.126
  20. Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc., 125, 15981 (2003). https://doi.org/10.1021/ja0369515
  21. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater., 11, 1307 (1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  22. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc., 125, 12384 (2003). https://doi.org/10.1021/ja0369461
  23. R. Beranek, H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki, Appl. Phys. Lett., 87, 243114 (2005). https://doi.org/10.1063/1.2140085
  24. Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B, 102, 10871 (1998). https://doi.org/10.1021/jp982948+
  25. J. H. Park, S. Kim, A. J. Bard, Nano. Lett., 6, 24 (2006). https://doi.org/10.1021/nl051807y
  26. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 6(2), 215 (2006). https://doi.org/10.1021/nl052099j
  27. B. Sun, G. Zhou, Y. Zhang, R. Liu, T. Li, Chem. Eng. J., 264, 125 (2015). https://doi.org/10.1016/j.cej.2014.11.070
  28. Y. Gua, M. Xinga, J. Zhang, Appl. Surf. Sci., 319, 8 (2014) https://doi.org/10.1016/j.apsusc.2014.04.182
  29. J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed., 44, 2100 (2005). https://doi.org/10.1002/anie.200462459
  30. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Appl. Phys. Lett., 82, 281 (2003). https://doi.org/10.1063/1.1537518