참고문헌
- G. Smestad, "Nanocrystalline Solar Cell Kit", Institute for Chemical Education in the University of Wisconsin, p. 17, (1998).
-
M. K. Nazeeruddin, P. Pe'chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, M. 'Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline
$TiO_2$ -Based Solar Cells', J. Am. Chem. Soc., 123, 1613 (2001). https://doi.org/10.1021/ja003299u -
G. Schlichthorl, S. Y. Huang , J. Sprague, A. J. Frank, 'Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline
$TiO_2$ Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy', J. Phys. Chem. B, 101, 8141 (1997). https://doi.org/10.1021/jp9714126 -
K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, '
$100\;mm{\times}100\;mm$ large-sized dye sensitized solar cells', J. Photochem. and Photobio. A: Chem., 164, 193 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.028 - S. Takenaka, Y. Maehara, H. Imai, M. Yoshikawa, and S. Shiratori, 'Layer-by-layer self-assembly replication technique: application to photoelectrode of dye-sensitized solar cell', Thin Solid Films, 346, 438-439 (2003).
- M. Gratzel, 'Dye-sensitized solar cells', J. Photochem. and Photobio. C: Photochem., Reviews 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
- S. Ito, T. Kitamura, Y. Yanagida, 'Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating Original Research Article', S. Solar Energy Mater. & Solar Cells, 76, 3-13 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X
- D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys., 25, 676 (1954). https://doi.org/10.1063/1.1721711
- J. S. Connolly, 'Notiz uber Verstarkung photoelectrischer Strome durch potische Sensibilisirung', Academic press, (1981).
- H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, 'Dye sensitised zinc oxide: aqueous electrolyte:platinum photocell', Nature (London), 261 (1976).
- S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, and M. Gratzel, 'Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers', Nature Chemistry, 6, 242-247 (2014). https://doi.org/10.1038/nchem.1861
- J. Kalowekamo and E. Baker, 'Estimating the manufacturing cost of purely organic solar cells', Solar Energy, 83, 1224-31 (2009). https://doi.org/10.1016/j.solener.2009.02.003
- Murakami and M. Graetzel, 'Counter electrodes for application of functional materials as catalysts', Inorg Chim Acta., 361, 572-80 (2008). https://doi.org/10.1016/j.ica.2007.09.025
- M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasakam, 'Improvement in durability of flexible plastic dye-sensitized solar cell modules', Sol. Energy Mater. Sol. Cells, 93, 836-9 (2009). https://doi.org/10.1016/j.solmat.2008.09.051
- K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, 'The superiority of Ti plate as the substrate of dye-sensitized solar cells', Sol Energy Mater Sol Cells, 91, 1176-81 (2007). https://doi.org/10.1016/j.solmat.2006.12.017
- T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, 'Properties of several types of novel counter electrodes for dye-sensitized solar cells', J. Electroanal Chem., 574(1), 77-83 (2004). https://doi.org/10.1016/j.jelechem.2004.08.002
- X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, 'Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells', Thin Solid Films, 472, 242-5 (2005). https://doi.org/10.1016/j.tsf.2004.07.083
- M. Toivola, F. Ahlskog, and P. Lund, 'Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures', Sol. Energy Mater. Sol. Cells, 90, 2881-93 (2006). https://doi.org/10.1016/j.solmat.2006.05.002
- K. Miettunen, J. Halme, M. Toivola, and P. Lund, 'Initial performance of dye solar cells on stainless steel substrates', J. Phys Chem. C., 112, 4011-7 (2008).
- S. Ngamsinlapasathian, K. Onoda, T. Takayasu, T. Sagawa, and S. Yoshikawa, Meeting Abstracts, 1001, 473 (2010).
- H. Wang, Y. Liu, H. Xu, X. Dong, H. Shen, Y. Wang, et al., 'An investigation on the novel structure of dye-sensitized solar cell with integrated photoanode', Renewable Energy, 34, 1635-8 (2009). https://doi.org/10.1016/j.renene.2008.10.023
- A. D. Pasquier, M. Stewart, T. Spitler, and M. Coleman, 'Aqueous coating of effcient flexible TiO2 dye solar cell photoanodes', Sol. Energy Mater. Sol. Cells, 93, 528-35 (2009). https://doi.org/10.1016/j.solmat.2008.10.029
- M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, 'Nanostructured dye solar cells on flexible substrates - review', Int. J. Energy Res., 33, 1145-60 (2009). https://doi.org/10.1002/er.1605
- K. Miettunen, J. Halme, and P. Lund, 'Segmented cell design for improved factoring of aging effects in dye solar cells', J. Phys Chem. C., 113, 10297-302 (2009). https://doi.org/10.1021/jp902974v
- G. Gruner. 'Carbon nanotube films for transparent and plastic electronics', J. Mater. Chem., 16, 3533-9 (2006). https://doi.org/10.1039/b603821m
- B. G. Lewis and D. C. Paine, 'Transparent conductive oxides' MRS Bull, 25, 22 (2000).
- S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode', Chem. Commun (Cambridge, UK), 38, 4004-6 (2006).
- J. H. Park, Y. Jun, H. Yun, S. Lee, and M. G. Kang, 'Fabrication of an efficient dye sensitized solar cell with stainless steel substrate', J. Electrochem. Soc., 155(7), F145-9 (2008). https://doi.org/10.1149/1.2909548
- M. G. Kang, N. Park, K. S. Ryu, S. H. Chang, and K. A. Kim, '4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate', Sol. Energy Mater Sol. Cells, 903, 574-81 (2006).
- K. Miettunen, X. Ruan, T. Saukkonen, J. Halme, M. Toivola, H. Guangsheng, et al. 'Stability of dye solar cells with photoelectrode on metal substrates', J. Elec trochem. Soc., 157, B814-9 (2010). https://doi.org/10.1149/1.3374645
-
N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y. J. Shin, 'Chemical Sintering of Nanoparticles: A Methodology for Low-Temperature Fabrication of Dye-Sensitized
$TiO_2$ Films', Adv. Mater., 17, 2349 (2005). https://doi.org/10.1002/adma.200500288 - Y. Kijitori, M. Ikegami, and T. Miyasaka. 'Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes', Chem. Lett. 36, 190 (2007). https://doi.org/10.1246/cl.2007.190
-
Y. I. Li, W. J. Lee, D. K. Lee, K. K. Kim, N. G. Park, and M. J. Ko, 'Pure anatase
$TiO_2$ "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells', Applied Physics Letters, 98, 103301 (2011). https://doi.org/10.1063/1.3562030 -
T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, 'Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of
$TiO_2$ photoelectrodes', Chem. Commun. Camb., 45, 4767 (2007). - D. Zhang, T. Yoshida, and H. Minoura. 'Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface', Adv Mater (Weinheim, Germany), 15(10), 814-7 (2003). https://doi.org/10.1002/adma.200304561
-
T. Oekermann, D. S. Zhang, T. Yoshida, and H. Minoura. 'Electron Transport and Back Reaction in Nanocrystalline
$TiO_2$ Films Prepared by Hydrothermal Crystallization', J. Phys. Chem. B, 108, 2227 (2004). https://doi.org/10.1021/jp034918z -
D. S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura. 'Room-Temperature Synthesis of Porous Nanoparticulate
$TiO_2$ Films for Flexible Dye-Sensitized Solar Cells', Adv. Funct. Mater., 16, 1228 (2006). https://doi.org/10.1002/adfm.200500700 -
T. Miyasaka and Y. Kijitori, 'Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous
$TiO_2$ Layers', J. Electrochem. Soc., 151, A1767 (2004). https://doi.org/10.1149/1.1796931 -
J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, 'Electrophoretically deposited
$TiO_2$ photo-electrodes for use in flexible dye-sensitized solar cells', J. Photochem. Photobiol., A 173, 1 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.023 - S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, 'Flexible dye-sensitized solar cells by 28 GHz microwave irradiation', J. Photochem. Photobiol., A 164, 93 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
-
D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, and J. A. Ayllon, 'New low-temperature preparation method of the
$TiO_2$ porous photoelectrode for dye-sensitized solar cells using UV irradiation', J. Photochem. Photobiol., A 175, 165 (2005). https://doi.org/10.1016/j.jphotochem.2005.04.031 - Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. S. Kim, and C. W. Chung, 'Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell', Jpn. J. Appl. Phys., 47, 6896 (2008). https://doi.org/10.1143/JJAP.47.6896
- M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles. 'Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers', Nature Mater., 4, 607 (2005). https://doi.org/10.1038/nmat1433
-
D. Zhang, T. Yoshida, and H. Minoura, 'Low temperature synthesis of porous nanocrystalline
$TiO_2$ thick film for dye-sensitized solar cells by hydrothermal crystallization', Chem. Lett., 9, 874-5 (2002). -
T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, 'UV light-assisted chemical vapor deposition of
$TiO_2$ for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes', Chem. Lett., 32, 1076-7 (2003). https://doi.org/10.1246/cl.2003.1076 - H. Kim, A. Pique, G. P. Kushto, R. C. Y. Auyeung, S. H. Lee, C. B. Arnold, et al., 'Dye sensitized solar cells using laser processing techniques', In: Proc SPIE-Int Soc Opt Eng. 2004 [5339 (Photon Processing in Microelectronics and Photonics III), 348-56
- H. Pan, S. H. Ko, N. Misra, and C. P. Grigoropoulos, 'Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics', Appl. Phys. Lett., 94, 071117/1-3 (2009). https://doi.org/10.1063/1.3082095
- T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, 'Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion effciency of 7.6%', Sol. Energy Mater. Sol. Cells, 94, 812-6 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
-
F. Pichot, J. R. Pitts, and B. A. Gregg, 'Low-temperature sintering of
$TiO_2$ colloids: application to flexible dye-sensitized solar cells', Langmuir, 16(13), 5626-30 (2000). https://doi.org/10.1021/la000095i - T. Miyasaka, M. Ikegami, and Y. Kijitori, 'Photovoltaic performance of plastic dye sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania', J. Electrochem. Soc., 154, A455-61.49 (2007). https://doi.org/10.1149/1.2712140
- P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, 'A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte', Nature Materials, 2, 402-407 (2003). https://doi.org/10.1038/nmat904
- S. J. Park, K.-C. Yoo, J.-Y. Kim, J. Y. Kim, D.-K. Lee, B. S. Kim, H. G. Kim, J. H. Kim, J. H. Cho, and M. J. Ko, 'Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells', ACS Nano, 7, 4050-4056 (2013). https://doi.org/10.1021/nn4001269
- C.-L. Chen, H. Teng, and Y.-L. Lee, 'In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells', Advanced Materials, 23(36), 4199-4204 (2011). https://doi.org/10.1002/adma.201101448
-
D. K. Roh, W. S. Chi, H. R. Jeon, S. J. Kim, and J. H. Kim, 'High Efficiency Solid-State Dye-Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree-like
$TiO_2$ Nanotubes', 24(3) 379-386 (2014). https://doi.org/10.1002/adfm.201301562 -
U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, 'Solid-state dye-sensitized mesoporous
$TiO_2$ solar cells with high photon-to-electron conversion efficiencies', Nature, 395, 583-585 (1998). https://doi.org/10.1038/26936 -
N. Cai, S.-J. Moon, Le Cevey-Ha, T. Moehl, R. H. Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, 'An Organic D-
${\pi}$ -A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells', Nano Lett., 11(4), 1452-1456 (2011). https://doi.org/10.1021/nl104034e -
E. Johansson, A. Sandell, H. Siegbahn, H. Rensmo, B. Mahrov, et al., 'Interfacial Properties of Photovoltaic
$TiO_2$ /dye/PEDOT-PSS Heterojunctions' Synthetic metals, 149, 157-167 (2005). https://doi.org/10.1016/j.synthmet.2004.12.004 - L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells' Physical Chemistry, Chemical Physics, 14, 779-789 (2012). https://doi.org/10.1039/C1CP23031J
- B.-W. Park, L. Yang, E. M. J. Johansson, N. Vlachopoulos, A. Chams, C. Perruchot, M. Jouini, G. Boschloo, and A. Hagfeldt, 'Neutral, Polaron and Bipolaron States in PEDOT Prepared by Photo-electrochemical Polymerization and the Effect on Charge Generation Mechanism in the Solid State Dye Sensitized Solar Cell' The Journal of Physical Chemistry C, 117, 22484-22491 (2013). https://doi.org/10.1021/jp406493v
- J. Zhang, L. Yang, Y. Shen, B.-W. Park, Y. Hao, E. M. J. Johansson, G. Boschloo, N. Vlachopoulos, A. Hagfeldt, L. Kloo, E. Gabrielsson, L. Sun, A. Jarboui, C. Perruchot, and M. Jouini, 'Hole transporting material poly (3, 4-ethylenedioxyothiophene) generated from organic and aqueous photoelectrochemical polymerization for an allsolid state dye sensitized solar cell', The Journal of Physical Chemistry C, April, 21, 118, 16591-16601 (2014). https://doi.org/10.1021/jp412504s
- L. Yang, J. Zhang, Y. Shen, B.-W. Park, D. Bi, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, C. Perruchot, M. Jouini, and N. Vlachopoulos, 'New Approach for Preparation of Efficient Solid-State Dye-Sensitized Solar Cells by Photoelectrochemical Polymerization in Aqueous Micellar Solution', Journal of Physical Chemistry Letter, 4, 4026-4031 (2013). https://doi.org/10.1021/jz4021266
- Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, H. Watanabe, T. Nakamori , and M. Uragami, "Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell", Langmuir, 19, 3572-3574 (2003). https://doi.org/10.1021/la026832n
-
B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, 'A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated
$P25TiO_2$ and CuSCN: Analysis of Pore Filling and IV Characteristics', Chem. Mater., 14, 5023-5029 (2002). https://doi.org/10.1021/cm020572d - Z. Lan, J. Wu, J. Lin, and M. Huang, 'Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells', J. Mater. Chem., 22, 3948-3954 (2012). https://doi.org/10.1039/c2jm15019k
- Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liuc, and T. Ma, 'Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells', J. Mater. Chem., 22, 22155-22159 (2012). https://doi.org/10.1039/c2jm35348b
- J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, 'Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells', ACS Nano, 4(10), 6203-6211 (2010) https://doi.org/10.1021/nn1016428
- W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, 'Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes', ACS Appl. Mater. Interfaces, 1, 1145-1149 (2009). https://doi.org/10.1021/am800249k
- T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Gratzel, 'Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes', J. Electrochem. Soc., 153, A2255-A2261 (2006). https://doi.org/10.1149/1.2358087
- B.-W. Park, M. Pazoki, K. Aitola, S. H. Jeong, E. M. J. Johansson, A. Hagfeldt, and G. Boschloo, 'Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells', ACS Appl. Mater. Interfaces, 6, 2074-2079 (2014). https://doi.org/10.1021/am405108d