초록
This paper considers the problem of estimation of the Hurst parameter H ${\in}$ (1/2, 1) from longitudinal data with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method based on $A{\ddot{i}}t$-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the proposed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribution to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and Peccati and Tudor (2005).