DOI QR코드

DOI QR Code

A Note on Bootstrapping in Sufficient Dimension Reduction

  • Received : 2015.02.26
  • Accepted : 2015.04.29
  • Published : 2015.05.31

Abstract

A permutation test is the popular and attractive alternative to derive asymptotic distributions of dimension test statistics in sufficient dimension reduction methodologies; however, recent studies show that a bootstrapping technique also can be used. We consider two types of bootstrapping dimension determination, which are partial and whole bootstrapping procedures. Numerical studies compare the permutation test and the two bootstrapping procedures; subsequently, real data application is presented. Considering two additional bootstrapping procedures to the existing permutation test, one has more supporting evidence for the dimension estimation of the central subspace that allow it to be determined more convincingly.

Keywords

References

  1. Bura, E. and Cook, R. D. (2001). Extending SIR: The weighted chi-square test, Journal of the American Statistical Association, 96, 996-1003. https://doi.org/10.1198/016214501753208979
  2. Cook, R. D. (1994). On the interpretation of regression plots, Journal of the American Statistical Association, 89 177-189. https://doi.org/10.1080/01621459.1994.10476459
  3. Cook, R. D. (1998). Principal Hessian directions revisited. Journal of the American Statistical Association, 93, 84-94. https://doi.org/10.1080/01621459.1998.10474090
  4. Cook, R. D. (2000). SAVE: A method for dimension reduction and graphics in regression, Communications in Statistics-Theory and Methods, 29, 2109-2121. https://doi.org/10.1080/03610920008832598
  5. Hooper, J. W. (1959). Simultaneous equations and canonical correlation theory, Econometrika, 27, 245-256. https://doi.org/10.2307/1909445
  6. Hotelling, H. (1936). Relations between two sets of variates, Biometrika, 28, 321-377. https://doi.org/10.1093/biomet/28.3-4.321
  7. Li, K. C. (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-327. https://doi.org/10.1080/01621459.1991.10475035
  8. Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction:Another application of Stein's lemma, Journal of the American Statistical Association, 87, 1025-1039. https://doi.org/10.1080/01621459.1992.10476258
  9. Shao, Y., Cook, R. D. and Weisberg, S. (2007). Marginal tests of sliced average variance estimation, Biometrika, 94, 285-296. https://doi.org/10.1093/biomet/asm021
  10. Ye, Z. and Weiss, R. E. (2003). Using the bootstrap to select one of a new class of dimension reduction methods, Journal of American Stastical Association, 98, 968-979. https://doi.org/10.1198/016214503000000927
  11. Yin, X. and Cook, R. D. (2002). Dimension reduction for the conditional kth moment in regression, Journal of Royal Statistical Society Series B, 64, 159-175. https://doi.org/10.1111/1467-9868.00330
  12. Yoo, J. K. (2011). Unified predictor hypothesis tests in sufficient dimension reduction: A bootstrap approach, Journal of the Korean Statistical Society, 40, 217-225. https://doi.org/10.1016/j.jkss.2010.09.006
  13. Yoo, J. K. (2013a). Chi-squared tests in kth-moment sufficient dimension reduction, Journal of Statistical Computation and Simulation, 83, 191-201. https://doi.org/10.1080/00949655.2011.635304
  14. Yoo, J. K. (2013b). Advances in seeded dimension reduction: Bootstrap criteria and extensions, Computational Statistics and Data Analysis, 60, 70-79. https://doi.org/10.1016/j.csda.2012.10.003
  15. Zhu, Y. and Zeng, P. (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression, Journal of the American Statistical Association, 101, 1638-1651. https://doi.org/10.1198/016214506000000140