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Abstract
A permutation test is the popular and attractive alternative to derive asymptotic distributions of dimension

test statistics in sufficient dimension reduction methodologies; however, recent studies show that a bootstrapping
technique also can be used. We consider two types of bootstrapping dimension determination, which are partial
and whole bootstrapping procedures. Numerical studies compare the permutation test and the two bootstrapping
procedures; subsequently, real data application is presented. Considering two additional bootstrapping proce-
dures to the existing permutation test, one has more supporting evidence for the dimension estimation of the
central subspace that allow it to be determined more convincingly.

Keywords: bootstrapping, central subspace, permutation, regression, sufficient dimension reduc-
tion

1. Introduction

Sufficient dimension reduction (SDR) is a statistical technique of dimension reduction in regression
without losing information on Y ∈ R1|X ∈ Rp. Its usual goal is to replace the p-dimensional original
predictors X by its a lower-dimensional linear projection ηTX without loss of information about Y |X,
which is equivalently stated as:

Y X|ηTX, (1.1)

where stands for independence, η ∈ Rp×d, and d ≤ p.
A subspace spanned by the columns of η to satisfy (1.1) is called a dimension reduction subspace.

SDR typically seeks for the intersection of all dimension reduction subspaces, which is called the
central subspace SY |X. Classical but still dominate SDR methods to estimate SY |X should be sliced
inverse regression (SIR; Li, 1991), sliced average variance estimation (SAVE; Cook, 2000), principal
Hessian directions (pHd; Li, 1992), and polynomial ordinary least square (POLS; Yin and Cook,
2002). Before explaining the methods, we define Σ = cov(X) and Z = Σ−1/2(X − E(X)). We denote
S(B) as a subspace spanned by the columns of B ∈ Rp×q.

SIR constructs E(Z|Y) to estimate SY |X. It is known that the subspace spanned by E(Z|Y) is equal
to S[MSIR = cov{E(Z|Y)}]. For a categorical Y , the construction of a sample version of E(Z|Y) is
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straightforward. If Y is many-valued or continuous, Y is categorized by dividing its range into h
slices. Then, Σ−1/2S(MSIR) ⊆ SY |X. While SIR focuses on E(Z|Y) to estimate SY |X, SAVE pays
attention onto cov(Z|Y). Cook (2000) showed that MSAVE = E{Ip − cov(Z|Y)}2 is informative to SY |X,
so that Σ−1/2S(MSAVE) ⊆ SY |X. The sample version of cov(X|Y) is constructed by the slicing scheme
of Y in SIR. The method of pHd constructs Σyzz = E[{Y − E(Y)}ZZT] to estimate SY |X. In practice,
the response Y in Σyzz is often replaced by the OLS residuals of ϵ = Y − E(Y) − βT{X − E(X)} and
we construct Σϵzz = E(ϵZZT), where β = Σ−1 cov(X,Y). Again, we have Σ−1/2S(MpHd = Σϵzz) ⊆
SY |X. POLS constructs a p × q matrix MPOLS = {cov(Z,W), cov(Z,W2), . . . , cov(Z,Wq)}, where
W = (Y − E(Y))/

√
var(Y). According to Yin and Cook (2002), the relation of Σ−1/2S(MPOLS) ⊆ SY |X

is established.
The estimation of SY |X through the kernel matrices of M• requires two steps to estimate the true

dimension and an orthonormal basis of SY |X. These steps are usually done as follows. First, spectral-
decompose M• and then test the number of nonzero eigenvalues, which is an estimate of the dimension
of SY |X. Then the eigenvectors corresponding to the nonzero eigenvalues form an orthonormal basis
of SY |X. In the process of the dimension estimation of SY |X, a test statistic and its null distribution are
required. When the derivation of the null distribution is difficult, a popular alternative is a permutation
test (Yin and Cook, 2002). We will later discuss about the dimension estimation and the permutation
test.

Recently Ye and Weiss (2003) proposed a bootstrap approach and discussed that it was effective to
choose one member from a large class of dimension reduction methods. Recent usage of bootstrapping
in SDR context can be found in Zhu and Zeng (2006), Yoo (2011) and Yoo (2013b). Bootstrapping
is well established in sufficient dimension reduction; however numerical studies for the dimension
estimation and comparison with the permutation test have not yet been well studied. This paper
represents a comprehensive study on bootstrapping in the dimension estimation of SY |X in sufficient
dimension reduction.

The organization of the paper is as follows. In Section 2 the dimension estimation and the permu-
tation test are reviewed. In Section 3, numerical studies on the dimension estimation of SY |X through
the bootstrapping and the comparison with the permutation test are provided. Real data application is
presented in Section 4, and we summarize our work in Section 5.

2. Dimension Estimation, Permutation and Bootstrapping

2.1. Dimension estimation in sufficient dimension reduction

For notational convenience, denote d as the true dimension of SY |X. Then d is determined through
testing a series of hypothesis. Starting with m = 0, the hypothesis of H0 : d = m versus H1 : d > m,
m = 0, 1, . . . , (p − 1), is tested. If the null hypothesis is rejected with level α, increment m by 1 and
redo the test. The test is terminated for the first time H0 : d = m is not rejected, and the estimate
d̂ of d is set to m in the null hypothesis. This estimation procedure requires a test statistic. Let λi,
i = 1, . . . , p, represent the ordered-eigenvalues of M• such that λ1 ≥ λ2 ≥ · · · ≥ λp. A test statistic
Λm for H0 : d = m versus H1 : d > m is the sum of the eigenvalues multiplied by the sample size n,
such as Λm = n

∑p
i=m+1 λi. This test statistic has been used in many SDR methods, including the four

methods discussed in the Section 1.
Apart from the original works of SIR, SAVE, pHd and POLS, general results regarding their test

statistics are presented in Bura and Cook (2001), Shao et al. (2007), Cook (1998) and Yoo (2013a) in
the order; however, there exists big time gap between the original works and the derivation of the null
distributions. Before the general results, a permutation test has been commonly adopted and will be
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discussed in the next subsection.

2.2. Permutation

For notational conveniences, M̂• ∈ Rp×p represents a sample version of M• constructed from Ẑ =
Σ̂
−1/2

(X − Ê(X)), and pairs of (λ̂i, γ̂i), i = 1, . . . , p, stand for the eigen-structure of M̂• such that
M̂• =

∑p
i=1 λ̂iγ̂iγ̂

T
i with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then, a permutation test is done as follows.

(1) Compute the sample kernel matrix M̂•, and, under H0 : d = m, obtain Λ̂m and partition eigenvec-
tor matrices

Γ̂1 = (γ̂1, . . . , γ̂m) and Γ̂2 = (γ̂m+1, . . . , γ̂p).

(2) Construct the vectors V̂i = Γ̂
T
1 Ẑi and Ûi = Γ̂

T
2 Ẑi.

(3) Randomly permute the indice i of the Ûi to obtain the permuted set Ûperm
i .

(4) Construct the test statistic Λ̂perm
m based on the partially permuted data of Yi and (V̂i, Û

perm
i ).

(5) Repeat Steps (3)–(4) N times. The p-value of the hypothesis testing is the fraction that Λ̂perm
m >

Λ̂m.

2.3. Bootstrapping

Ye and Weiss (2003) proposed a bootstrap approach in sufficient dimension reduction to select a best
one from a class of SDR methods. In the bootstrap approach, it is necessary to measure a distance
between two subspaces. For this, the vector correlation coefficient q (Hotelling, 1936) and the trace
correlation r (Hooper, 1959) were adopted in Ye and Weiss (2003). Suppose two k-dimensional
subspaces of S(A ∈ Rp×k) and S(B ∈ Rp×k) such that ATA = Ik and BTB = Ik. Then, let ρ2

i ,
i = 1, . . . , k, stand for the ordered eigenvalues of BTAATB. Then, the vector correlation q and the
trace correlation r are defined as: q2(A,B) =

∏k
i=1 ρ

2
i and r2(A,B) = (1/k)

∑k
i=1 ρ

2
i . The two values

of q2(A,B) and r2(A,B) varies from 0 to 1, and q2(A,B) and r2(A,B) are equal to 1, if the two
subspaces of S(A) and S(B) are equivalent. To change a concept of correlation (higher and closer)
to that of distance (smaller and closer), we consider the following: qD(A,B) = 1 − |

√
q2(A,B)| and

rD(A,B) = 1 − |
√

r2(A,B)|.
Next select candidate SDR methods and construct their corresponding sample kernel matrices

M̂•. From the original sample (Yi,Xi), i = 1, . . . , n, generate N bootstrap samples (Yb
i ,X

b
i ), b =

1, . . . ,N, and obtain bootstrap sample kernel matrices M̂b
•. For each method, compute qb

D(M̂•, M̂b
•)

and rb
D(M̂•, M̂b

•) for b = 1, . . . ,N. Ye and Weiss (2003) discussed that the best method among
the candidates should have less distances between S(M̂•) and S(M̂b

•) than others. So, for each
method, compute the average distances of q̄D and r̄D such that q̄D = (1/N)

∑N
b=1 qb

D(M̂•, M̂b
•) and

r̄D = (1/N)
∑N

b=1 rb
D(M̂•, M̂b

•). Then select the method to give the smallest q̄D and r̄D.

2.4. Bootstrap dimension estimation

The bootstrapping approach discussed in the previous subsection was not directly oriented for the
dimension estimation because it does not give a p-value for the test. So, two versions of modification
of the bootstrap approach are considered to estimate the dimension of SY |X. One of them will be called
whole bootstrap and the other will be a called partial bootstrap.
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The partial bootstrap approach is to replace permutation samples in the permutation test by boot-
strap samples, and follow the same procedure as the permutation test. The whole bootstrap approach
for the dimension estimation can done as follows.

(1) From the original sample, compute the sample kernel matrix M̂•. Then, under H0 : d = m, obtain
a set of the eigenvectors Γ̂m = (γ̂1, . . . , γ̂m) of M̂•, where γ̂i, i = 1, . . . ,m, is the eigenvector
corresponding to the ith largest eigenvalue of M̂•.

(2) Construct N bootstrap samples, and construct bootstrap sample kernel matrices of M̂b
•. Then,

under H0 : d = m, obtain Γ̂
b
m = (γ̂b

1, . . . , γ̂
b
m) from M̂b

•.

(3) Compute q̄D and r̄D from pairs of (Γ̂m, Γ̂
b
m), b = 1, . . . ,N, and denote them as q̄m

D and r̄m
D, respec-

tively.

(4) Do Steps (2)–(3) for m = 1, . . . , p.

(5) Set d̂ to m to give the smallest q̄m
D and r̄m

D.

In Step (5), the estimation of d is done, following the guidance of Ye and Weiss (2003). The
distance between Γ̂m and Γ̂

b
m is expected to be the smallest under the true dimension. Therefore, it is

natural to choose m to have the smallest values of q̄m
D and r̄m

D as the estimate of the true dimension.
It should be pointed out that the whole bootstrap approach cannot be done for H0 : d = 0, because
Γ̂0 does not exist. However, it is no issue in practice, because d = 0 is not of main interest in most
regression problems.

3. Numerical Studies

For numerical studies, four artificial models were considered. Commonly, five-dimensional predictors
X = (X1, . . . , X5)T and a random error ε were independently generated from N(0, 1).

Model 1: Y |X = X1 + X1X2 + ε.

Model 2: Y |X = X1 + exp(X2) + ε.

Model 3: Y |X = X2
1 + ε.

Model 4: Y |X = X2
1 + X2

2 + ε.

In the three models except Model 3, two columns of ((1, 0, 0, 0, 0), (0, 1, 0, 0, 0))T span SY |X, and
hence the true dimension d is equal to two, while SY |X is spanned by (1, 0, 0, 0, 0)T in Model 3, so
d = 1.

The methods of SIR and POLS work well to detect linear trends, while SAVE and pHd do to
detect non-linear trends such as quadratic relationship. So, for Models 1–2 to have linear trend, SIR
and POLS with q = 3 were applied, while Models 3–4 were fitted with SAVE and pHd. The number
N of permutation and bootstrapping were 500 and 1000 for each sample size of 50, 100, 200 and 400.
The total number of iterations for each model was 500; subsequently, level α = 0.05 was used. Tables
1–8 reports the results Results of the numerical studies.

Tables 1 and 2 show the dimension determination results for Model 1 are interesting. The permuta-
tion and partial bootstrapping tests provide similar dimension test results regardless of the application
of SIR and POLS. However, the results for the whole bootstrapping are quite different from the choice
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Table 1: Percentages of dimension determination for Model 1 with SIR application
SIR N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 34.8 54.2 9.8 1.2 34.0 54.8 10.2 1.0

Permutation 100 6.8 65.6 25.8 1.8 6.8 66.8 24.2 2.2
200 0.0 42.2 55.0 2.8 0.0 41.4 56.2 2.4
400 0.0 6.2 89.8 4.0 0.0 5.6 90.2 4.2
50 35.2 54.0 9.8 1.0 33.6 55.8 9.6 1.0

Partial 100 6.6 65.4 25.4 2.2 6.8 66.4 24.8 2.0
bootstrapping 200 0.0 42.0 55.4 2.6 0.0 42.0 55.2 2.8

400 0.0 5.6 90.2 4.2 0.0 6.0 89.4 4.6

Whole 50 N/A 98.4 1.6 0.0 N/A 98.0 1.6 0.4

bootstrapping 100 N/A 97.2 2.6 0.2 N/A 97.4 2.4 0.2

q̄D
200 N/A 98.6 1.4 0.0 N/A 98.4 1.6 0.0
400 N/A 97.2 2.8 0.0 N/A 97.8 2.2 0.0

Whole 50 N/A 5.8 1.4 92.8 N/A 5.6 1.0 93.4

bootstrapping 100 N/A 28.0 6.2 65.8 N/A 27.2 6.2 66.6

r̄D
200 N/A 67.0 15.0 18.0 N/A 67.4 14.4 18.2
400 N/A 79.0 17.8 3.2 N/A 79.4 17.6 3.0

SIR = sliced inverse regression.

Table 2: Percentages of dimension determination for Model 1 with POLS application
POLS N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 9.2 48.2 38.6 4.0 9.4 48.0 38.6 4.0

Permutation 100 1.4 18.8 72.4 7.4 1.4 18.0 72.6 8.0
200 0.2 4.8 86.4 8.6 0.2 4.6 85.6 9.6
400 0.0 0.0 92.0 8.0 0.0 0.0 92.0 8.0
50 9.8 46.4 39.8 4.0 9.6 48.0 38.4 4.0

Partial 100 1.4 19.0 71.6 8.0 1.4 18.4 72.6 7.6
bootstrapping 200 0.2 4.8 86.2 8.8 0.2 4.8 86.0 9.0

400 0.0 0.0 92.6 7.4 0.0 0.0 92.6 7.4

Whole 50 N/A 96.2 3.6 0.2 N/A 94.2 4.4 1.4

bootstrapping 100 N/A 88.4 17.6 0.0 N/A 88.8 11.2 0.0

q̄D
200 N/A 52.6 47.4 0.0 N/A 52.5 47.5 0.0
400 N/A 17.0 83.0 0.0 N/A 17.0 83.0 0.0

Whole 50 N/A 1.8 2.0 96.2 N/A 1.6 2.1 96.3

bootstrapping 100 N/A 1.2 13.4 85.4 N/A 1.5 13.8 84.7

r̄D
200 N/A 0.0 36.2 63.8 N/A 0.0 36.4 63.6
400 N/A 0.0 68.0 32.0 N/A 0.0 68.1 31.9

POLS = polynomial ordinary least square.

of the SDR methods. This implies that the whole bootstrapping is sensitive to the choice of the SDR
methods and is why it is used to select a best SDR method among many candidates. From Table 1
by the SIR application, the permutation and partial bootstrapping tests show even better performance
than the whole bootstrapping with both q̄D and r̄D. However, the differences become narrower in
Table 2 by the POLS application.

Tables 3 and 4 for Model 2 indicate that the whole bootstrapping has better performance in the
estimation of d than the permutation and partial bootstrapping tests for all sample sizes considered.
For the SIR application, q̄D provides the best results, while r̄D is the best for the POLS application.

Tables 5 and 6 for Model 3, in the pHd application, the permutation and partial bootstrapping tests
and the whole bootstrapping with q̄D give similar results, while the whole bootstrapping with r̄D suf-
fers the overestimation of d with 50 sample sizes. However, the permutation and partial bootstrapping
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Table 3: Percentages of dimension determination for Model 2 with SIR application
SIR N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 0.4 88.8 9.6 1.2 0.6 88.2 9.8 1.4

Permutation 100 0.0 81.4 16.6 2.0 0.0 79.8 18.4 1.8
200 0.0 58.6 40.0 1.4 0.0 57.8 41.0 1.2
400 0.0 19.6 76.8 3.6 0.0 20.4 76.0 3.6
50 1.0 88.0 9.4 1.6 0.2 89.0 9.4 1.4

Partial 100 0.0 80.4 17.6 2.0 0.0 80.8 17.6 1.6
bootstrapping 200 0.0 57.0 41.4 1.6 0.0 58.2 40.0 1.8

400 0.0 21.0 75.2 3.8 0.0 20.6 75.8 3.6

Whole 50 N/A 96.0 4.0 0.0 N/A 96.4 3.4 0.2

bootstrapping 100 N/A 82.2 17.8 0.0 N/A 82.4 17.6 0.0

q̄D
200 N/A 51.4 48.4 0.2 N/A 53.2 46.6 0.2
400 N/A 17.6 82.0 0.4 N/A 16.8 82.8 0.4

Whole 50 N/A 1.8 1.8 96.4 N/A 2.0 1.8 96.2

bootstrapping 100 N/A 1.2 13.4 85.4 N/A 1.6 13.0 85.4

r̄D
200 N/A 0.0 35.2 64.8 N/A 0.0 36.4 63.6
400 N/A 0.0 68.0 32.0 N/A 0.0 67.4 32.6

SIR = sliced inverse regression.

Table 4: Percentages of dimension determination for Model 2 with POLS application
POLS N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 5.4 53.4 37.4 3.8 5.8 52.4 38.0 3.8

Permutation 100 0.2 34.4 57.8 7.6 0.0 35.0 57.6 7.4
200 0.0 15.2 74.8 10.0 0.0 14.8 75.2 10.0
400 0.0 8.6 72.2 19.2 0.0 8.6 73.8 17.6
50 5.6 53.2 36.8 4.4 5.2 53.8 36.8 4.2

Partial 100 0.0 35.2 57.4 7.4 0.0 35.4 57.8 6.8
bootstrapping 200 0.0 14.8 75.2 10.0 0.0 15.0 74.6 10.4

400 0.0 8.8 72.6 18.6 0.0 8.2 73.2 18.6

Whole 50 N/A 45.6 53.6 0.8 N/A 45.8 53.6 0.6

bootstrapping 100 N/A 29.8 69.4 0.8 N/A 29.0 70.4 0.6

q̄D
200 N/A 17.0 83.0 0.0 N/A 16.6 83.4 0.0
400 N/A 11.0 88.8 0.2 N/A 11.4 88.4 0.2

Whole 50 N/A 2.8 55.4 41.8 N/A 2.6 56.0 41.4

bootstrapping 100 N/A 1.4 78.2 20.4 N/A 1.2 78.2 20.6

r̄D
200 N/A 0.0 89.4 10.6 N/A 0.0 89.4 10.6
400 N/A 0.0 90.0 10.0 N/A 0.0 90.0 10.0

POLS = polynomial ordinary least square.

tests suffer the underestimation of d for 50 sample sizes in the SAVE application and the whole boot-
strapping with r̄D does the overestimation of d for the same sample sizes. The whole bootstrapping
with q̄D alone results in the consistently correct estimation of d.

Tables 7 and 8 for Model 4 indicate that, regardless of pHd and SAVE, the permutation and partial
bootstrapping tests and the whole bootstrapping with q̄D often underestimate the true dimension with
smaller sample sizes such as n = 50 and 100, while the whole bootstrapping with r̄D overestimates d
in sample sizes. However, with moderate sample sizes, the four approaches similarly determine the
true dimension correctly.

From the numerical studies, what we can commonly observe is as follows. There is no difference
between the permutation and partial bootstrapping tests. Usage of q̄D often yields more percentages
of the correct decisions than that of r̄D. And, q̄D tends to underestimate the true dimension, while r̄D
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Table 5: Percentages of dimension determination for Model 3 with pHd application
pHd N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ > 1 d̂ = 0 d̂ = 1 d̂ > 1
50 6.2 90.0 3.8 6.8 89.2 4.0

Permutation 00 0.0 95.4 4.6 0.0 95.8 4.2
200 0.0 95.2 4.8 0.0 94.8 5.2
400 0.0 95.0 5.0 0.0 95.0 5.0
50 4.4 91.0 4.6 4.8 91.2 4.0

Partial 100 0.0 94.0 6.0 0.0 94.8 5.2
bootstrapping 200 0.0 94.6 5.2 0.0 94.2 5.8

400 0.0 94.8 5.2 0.0 95.0 5.0

Whole 50 N/A 99.8 0.2 N/A 100.0 0.0

bootstrapping 100 N/A 100.0 0.0 N/A 100.0 0.0

q̄D
200 N/A 100.0 0.0 N/A 100.0 0.0
400 N/A 100.0 0.0 N/A 100.0 0.0

Whole 50 N/A 51.2 48.8 N/A 51.4 48.6

bootstrapping 100 N/A 92.2 7.85 N/A 92.6 7.4

r̄D
200 N/A 100.0 0.0 N/A 100.0 0.0
400 N/A 100.0 0.0 N/A 100.0 0.0

pHd = principal Hessian directions.

Table 6: Percentages of dimension determination for Model 3 with SAVE application
SAVE N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ > 1 d̂ = 0 d̂ = 1 d̂ > 1
50 59.0 35.4 5.6 58.6 36.2 5.2

Permutation 100 6.2 88.6 5.2 7.0 87.6 3.6
200 0.0 94.0 6.0 0.0 94.2 5.8
400 0.0 95.0 5.0 0.0 94.8 5.2
50 66.0 29.8 4.2 67.0 28.8 4.2

Partial 100 7.6 87.6 4.8 8.6 86.6 4.8
bootstrapping 200 0.0 94.2 5.8 0.0 94.8 5.2

400 0.0 95.6 4.4 0.0 95.8 4.2

Whole 50 N/A 98.2 1.8 N/A 98.8 1.2

bootstrapping 100 N/A 99.8 0.2 N/A 99.8 0.2

q̄D
200 N/A 100.0 0.0 N/A 100.0 0.0
400 N/A 100.0 0.0 N/A 100.0 0.0

Whole 50 N/A 8.0 92.0 N/A 7.6 92.4

bootstrapping 100 N/A 77.0 23.0 N/A 77.0 23.0

r̄D
200 N/A 99.6 0.4 N/A 99.6 0.4
400 N/A 100.0 0.0 N/A 100.0 0.0

SAVE = sliced average variance estimation.

does to overestimate it. Therefore, if r̄D determines a higher dimension than q̄D and the permutation
or partial bootstrapping test decides a value between the two, one should consider the estimate from
the permutation or partial bootstrapping test as an estimate of the true dimension.

4. Real Data Application: Soil Evaporation Data

For real data application, we consider how daily soil evaporation is influenced by air temperature area,
air temperature range, humidity area and humidity range. The data set contains 46 observations, Cook
(1994) has a detailed description.

According to Yin and Cook (2002), any notable non-linearities were not observed through inspect-
ing various graphical plots. So, they determined SIR and POLS to be suitable SDR methods, and it
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Table 7: Percentages of dimension determination for Model 4 with pHd application
pHd N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 0.4 59.4 35.4 4.8 1.2 57.6 36.8 4.4

Permutation 100 0.0 7.6 88.4 4.0 0.0 8.0 88.2 3.8
200 0.0 0.0 94.8 5.2 0.0 0.0 94.8 5.2
400 0.0 0.0 94.0 6.0 0.0 0.0 64.4 5.6
50 0.4 53.4 40.0 6.2 0.4 54.8 39.4 5.4

Partial 100 0.0 7.0 88.8 4.2 0.0 6.8 89.2 4.0
bootstrapping 200 0.0 0.0 94.4 5.6 0.0 0.0 94.4 5.6

400 0.0 0.0 93.8 6.2 0.0 0.0 93.8 6.2

Whole 50 N/A 81.6 15.8 2.6 N/A 82.0 15.6 2.4

bootstrapping 100 N/A 27.4 72.0 0.6 N/A 26.6 72.8 0.6

q̄D
200 N/A 6.2 93.8 0.0 N/A 6.6 93.4 0.0
400 N/A 0.6 99.4 0.0 N/A 0.6 99.4 0.0

Whole 50 N/A 5.2 9.6 85.2 N/A 4.8 10.0 85.2

bootstrapping 100 N/A 3.2 81.6 15.2 N/A 3.0 81.4 15.6

r̄D
200 N/A 0.6 99.2 0.2 N/A 0.6 99.2 0.2
400 N/A 0.0 100.0 0.0 N/A 0.0 100.0 0.0

pHd = principal Hessian directions.

Table 8: Percentages of dimension determination for Model 4 with SAVE application
SAVE N = 500 N = 1000

Type n d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
50 38.8 43.6 11.0 6.6 37.6 44.8 11.4 6.2

Permutation 100 0.8 38.6 54.8 5.8 0.2 39.4 54.6 5.8
200 0.0 0.6 92.2 7.2 0.0 0.4 92.4 7.2
400 0.0 0.0 95.0 5.0 0.0 0.0 95.2 4.8
50 49.6 36.6 9.2 4.6 48.8 37.4 8.8 5.0

Partial 100 1.2 41.4 51.8 5.6 1.2 40.8 52.0 6.0
bootstrapping 200 0.0 0.4 92.6 7.0 0.0 0.4 93.0 6.6

400 0.0 0.0 95.6 4.4 0.0 0.0 95.6 4.4

Whole 50 N/A 96.6 2.6 0.8 N/A 96.4 2.8 0.8

bootstrapping 100 N/A 52.2 46.6 1.2 N/A 51.0 48.0 1.0

q̄D
200 N/A 6.6 93.4 0.0 N/A 6.4 93.6 0.0
400 N/A 0.2 99.8 0.0 N/A 0.2 99.8 0.0

Whole 50 N/A 0.8 0.2 99.0 N/A 0.8 0.2 99.0

bootstrapping 100 N/A 3.0 38.0 59.0 N/A 2.8 38.0 59.2

r̄D
200 N/A 0.6 97.6 1.8 N/A 0.6 97.8 1.6
400 N/A 0.0 100.0 0.0 N/A 0.0 100.0 0.0

SAVE = sliced average variance estimation.

Table 9: Dimension estimation for soil evaporation data in Section 4
Type H0 : d = 0 H0 : d = 1 H0 : d = 2 H0 : d = 3 Decision

Permutation (p-value) 0.000 0.016 0.918 N/A d̂ = 2
Partial bootstrap (p-value) 0.000 0.028 0.912 N/A d̂ = 2
Whole bootstrap (q̄D) N/A 0.495 0.503 0.841 d̂ = 1
Whole bootstrap (r̄D) N/A 0.495 0.192 0.173 d̂ = 3

was discussed that the results of POLS was superior than SIR. Following this guidance, the method
of POLS alone was considered for illustration purposes.

To estimate the true dimension of SY |X, POLS with k = 3 was applied to the data set. The results
of the permutation test, the partial bootstrap test and the whole bootstrap determination with q̄D and
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r̄D are reported in Table 9.
Table 9 indicates that the permutation and partial bootstrap tests determine d̂ = 2 with level

α = 0.05. However, the whole bootstrapping with q̄D provides d̂ = 1, while the whole bootstrapping
with r̄D does d̂ = 3. This coincides what we observed from numerical studies with smaller sample
sizes. Therefore, it is reasonably concluded that d̂ = 2.

5. Discussion

A permutation test is the popular and attractive alternative to derive the asymptotic distributions of di-
mension test statistics in sufficient dimension reduction methodologies; however, recent studies show
that a bootstrapping technique can also be used. We consider two types of bootstrapping dimension
determination, which are partial and whole bootstrapping procedures. In the former procedure, sub-
sets of variables are bootstrap-sampled, while the whole variables are bootstrap-sampled in the latter.
The partial bootstrapping is similar to the permutation test and can yield relating p-values; however,
distance measures using a vector correlation coefficient q and a trance correlation r are adopted since
the whole bootstrapping cannot provide p-values for the dimension determination. So, given to a
hypothesized dimension, compute the average distances between a basis estimate from the original
sample and basis estimates from the whole bootstrap samples, and set the dimension which gives the
smallest averages to the estimate of the central subspace.

According to numerical studies, with smaller sample sizes, usage of q often underestimates the
true dimension, while that of r overestimates it; in addition, the partial bootstrapping determination is
almost equal to the permutation test.

Considering two additional bootstrapping procedures to the existing permutation test, one has
more supporting evidences for the dimension estimation of the central subspace, so they can determine
it more convincingly.
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