DOI QR코드

DOI QR Code

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae (Department of Physics, Chungbuk National University) ;
  • Kim, Juhwan (Department of Physics, Chungbuk National University) ;
  • Lee, Kangil (Department of Physics, Chungbuk National University) ;
  • Oh, Suhk Kun (Department of Physics, Chungbuk National University) ;
  • Kang, Hee Jae (Department of Physics, Chungbuk National University) ;
  • Park, Nam Seok (Department of Semiconductor Electroengineering, Chungbuk Health&Science University)
  • Received : 2015.04.29
  • Accepted : 2015.05.29
  • Published : 2015.05.30

Abstract

Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Keywords

References

  1. H. L. Chen, Y. S. Yang, Thin Solid Films, Vol. 516(16), 5590 (2008). https://doi.org/10.1016/j.tsf.2007.07.035
  2. S. A. Makhlouf, Thin Solid Films 516, 3112 (2008). https://doi.org/10.1016/j.tsf.2007.07.213
  3. E. Fujii, A. Tomozawa, H. Torii, R. Takayama, Jpn. J. Appl. Phys, vol. 35, L328 (1996). https://doi.org/10.1143/JJAP.35.L328
  4. H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, vol. 236, no. 1-2, 27 (1993). https://doi.org/10.1016/0040-6090(93)90636-4
  5. M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, S. Yamada, Jpn. J. Appl. Phys., 33, 6656 (1994).
  6. H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, J. Mater. Sci. Lett., 15, 1081 (1996). https://doi.org/10.1007/BF00274914
  7. G. A. Niklasson, C. G. Graqvist, J. Mater. Chem. 17, 127 (2007). https://doi.org/10.1039/B612174H
  8. M. Ando, J. Zehetner, T. Kobayashi, M. Haruta, Sens. Actuator 36, 513 (2003).
  9. J. F. Wager, Science 300, 1245 (2003). https://doi.org/10.1126/science.1085276
  10. H. Hosono, Vacuum 66, 419 (2002). https://doi.org/10.1016/S0042-207X(02)00165-3
  11. K. G. Gopchandran, B. Joseph, J. T. Abraham, P. Koshy, V. K. Vaidyan, Vacuum 48, 547 (1997). https://doi.org/10.1016/S0042-207X(97)00023-7
  12. Y. Tawada, H. Okamoto, and Y. Hamakawa, Appl. Phys. Lett. 39, 237 (1981). https://doi.org/10.1063/1.92692
  13. B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, J. C. Bernede, Appl. Surf. Sci, vol. 253, no. 9, 4330 (2007). https://doi.org/10.1016/j.apsusc.2006.09.046
  14. B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, J. C. Bernede, Appl. Surf. Sci, vol. 253, no. 9, 4330 (2007). https://doi.org/10.1016/j.apsusc.2006.09.046
  15. K. J. Patel, M. S. Desai, C. J. Panchal, Bharati Rehani, J. Nano- Electron. Phys, 3, no. 1, 376 (2011).
  16. M. Tanaka, M. Mukai, Y. Fujimori, M. Kondoh, Y. Tasaka, H. Baba, S. Usami, Thin Solid Films, 281-282, 453 (1996). https://doi.org/10.1016/0040-6090(96)08673-7
  17. W.C. Yeh, M. Matsumura, Jpn. J. Appl. Phys, 36, 6884 (1997). https://doi.org/10.1143/JJAP.36.6884
  18. Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang, Thin Solid Films, 420, 54 (2002).
  19. T. L. Barr and S. Seal, J. Vac. Sci. Technol. A 13, 1239 (1995). https://doi.org/10.1116/1.579868
  20. S. Oswald and W. Bruckner, Surf. Interface Anal. 36, 17 (2004). https://doi.org/10.1002/sia.1640
  21. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, Surf. Sci. 600, 1771 (2006). https://doi.org/10.1016/j.susc.2006.01.041
  22. Y. R. Denny, H. C. Shin, S. Seo, S. K. Oh, H. J. Kang, D. Tahir, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Elect. Spect. Rel. Phenom. 185, 18 (2012). https://doi.org/10.1016/j.elspec.2011.12.004
  23. Y. R. Denny, S. Lee, K. Lee, S. Seo, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Vac. Sci. Technol. A 31, 031508(1) (2013).

Cited by

  1. Self-Functionalization Behind a Solution-Processed NiOxFilm Used As Hole Transporting Layer for Efficient Perovskite Solar Cells vol.9, pp.14, 2017, https://doi.org/10.1021/acsami.6b15975
  2. Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films vol.64, 2017, https://doi.org/10.1016/j.mssp.2017.03.009
  3. Structural, optical, and photocatalytic investigation of nickel oxide@graphene oxide nanocomposite thin films by RF magnetron sputtering vol.53, pp.21, 2018, https://doi.org/10.1007/s10853-018-2692-7