DOI QR코드

DOI QR Code

Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles

  • Oh, Jae Won (Department of Physics, Kangwon National University) ;
  • Cho, Il-Wook (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • Received : 2015.05.11
  • Accepted : 2015.05.28
  • Published : 2015.05.30

Abstract

InP/InGaP quantum structures (QSs) were grown on GaAs (001) substrates by a migration-enhanced molecular beam epitaxy method. Temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL (TRPL) were performed to investigate the optical properties of InP/InGaP QSs as a function of migration enhanced epitaxy (MEE) growth cycles from 2 to 8. One cycle for the growth of InP QS consists of 2-s In and 2-s P supply with an interruption time of 10 s after each source supply. As the MEE growth cycle increases from 2 to 8, the PL peak is redshifted and exhibited different (larger, comparable, or smaller) bandgap shrinkages with increasing temperature compared to that of bulk InP. The PL decay becomes faster with increasing MEE cycles while the PL decay time increases with increasing emission wavelength. These PL and TRPL results are attributed to the different QS density and size/shape caused by the MEE repetition cycles. Therefore, the size and density of InP QSs can be controlled by changing the MEE growth cycles.

Keywords

References

  1. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B, 69, 235332 (2004). https://doi.org/10.1103/PhysRevB.69.235332
  2. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D Hadass, A Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, J. Phys. D: Appl. Phys. 38, 2088 (2005).
  3. C. Chen, Y. Wang, H. S. Djie, B. S. Ooi, L. F. Lester, T. L. Koch, and J. C. M. Hwang, IEEE J. Sel. Topics Quantum Electron. 17, 1167 (2011). https://doi.org/10.1109/JSTQE.2010.2103373
  4. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). https://doi.org/10.1063/1.3309411
  5. S. K. Ha, J. D. Song, I. K. Han, D. Y. Ko, S. Y. Kim, and E. H. Lee, J. Korean Phys. Soc. 59, 3089 (2011). https://doi.org/10.3938/jkps.59.3089
  6. P. M. Smowton, S. N. Elliott, S. Shutts, M. S. Al-Ghamdi, and A. B. Krysa, IEEE J. Sel. Topics Quantum Electron. 17, 1343 (2011). https://doi.org/10.1109/JSTQE.2011.2115235
  7. E. Koroknay, W.-M. Schulz, M. Eichfelder, R. RoBbach, M. Jetter, and P. Michler, J. Phys.: Conf. Series, 245, 012077 (2010). https://doi.org/10.1088/1742-6596/245/1/012077
  8. S. N. Elliott, P. M. Smowton, A. B. Krysa, and R. Beanland, Semicond. Sci. Technol. 27, 094008 (2012). https://doi.org/10.1088/0268-1242/27/9/094008
  9. R. Rödel, A. Bauer, S. Kremling, S. Reitzenstein, S. Hofling, M. Kamp, L. Worschech, and A. Forchel, Nanotech. 23, 015605 (2012). https://doi.org/10.1088/0957-4484/23/1/015605
  10. H. R. Byun, M.-Y. Ryu, J. D. Song, and C.-L. Lee, J. Korean Phys. Soc. 66, 811 (2015). https://doi.org/10.3938/jkps.66.811
  11. H. Y. Kim, M-Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012). https://doi.org/10.1016/j.jlumin.2012.01.057
  12. S. R. Kwon, M.-Y. Ryu, and J. D. Song, Appl. Sci. Converg. Tech. 23, 387 (2014). https://doi.org/10.5757/ASCT.2014.23.6.387
  13. J. W. Oh, H. R. Byun, M.-Y. Ryu, and J. D. Song, J. Korean Vac. Soc. 22, 92 (2013). https://doi.org/10.5757/JKVS.2013.22.2.92
  14. D. Richter, R. RoBbach, W.-M. Schulz, E. Koroknay, C. Kessler, M. Jetter, and P. Michler, Appl. Phys. Lett. 97, 063107 (2010). https://doi.org/10.1063/1.3478848
  15. S. Y. Kim, J. D. Song, I. K. Han, and T. W. Kim, J. Nanosci. Nanotech. 12, 5519 (2012). https://doi.org/10.1166/jnn.2012.6325
  16. P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 89, 151902 (2006). https://doi.org/10.1063/1.2358312
  17. Y.P. Varshni, Physica, 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  18. M. E. Levinshten, S.L. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Volume 1: Si, Ge, C (Diamond), GaAs,GaP, GaSb, InAs, InP, InSb (World Scientific, London, 1996).
  19. Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001). https://doi.org/10.1063/1.1385579
  20. Y-F. Wu, J. C. Lee, T-E. Nee, and J-C. Wang, J. Lumine. 131, 1267 (2011). https://doi.org/10.1016/j.jlumin.2011.02.037
  21. L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films, 498, 188 (2006). https://doi.org/10.1016/j.tsf.2005.07.079
  22. T. E. J. Campbell-Ricketts, N. A. J. M. Kleemans, R. Notzel, A. Y. Silov, and P. M. Koenraad, Appl. Phys. Lett. 96, 033102 (2010). https://doi.org/10.1063/1.3293294
  23. H. J. Lee, M-Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010). https://doi.org/10.1063/1.3506709

Cited by

  1. Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy vol.25, pp.4, 2016, https://doi.org/10.5757/ASCT.2016.25.4.81
  2. Luminescence properties of InP/InGaP quantum structures grown by using a migration-enhanced epitaxy at different growth temperatures vol.70, pp.8, 2017, https://doi.org/10.3938/jkps.70.785