DOI QR코드

DOI QR Code

Application of non-destructive method for evaluation of soil nail length

쏘일네일의 길이평가를 위한 비파괴 기법의 적용

  • Kim, Ki-Hong (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Nag-Young (Korea Expressway Corporation) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yu, Jung-Doung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 김기홍 (고려대학교 공과대학 건축사회환경공학부) ;
  • 김낙영 (한국도로공사 도로교통연구원 환경연구실) ;
  • 이종섭 (고려대학교 공과대학 건축사회환경공학부) ;
  • 유정동 (고려대학교 공과대학 건축사회환경공학부)
  • Received : 2014.12.31
  • Accepted : 2015.03.23
  • Published : 2015.03.31

Abstract

As soil nails support a ground by the friction between nails and soils being reinforced, the length of soil nails is important factor for a ground stability. Thus, the soil nail length has to be accurately evaluated in order to secure a ground stability. The goal of this study is to suggest the applicability of the non-destructive method as the basic research for the evaluation of the soil nail length. First, the elastic and electromagnetic waves are adopted to select an applicable method for the soil nails connected by the coupler. Test results show that while the ultrasonic waves are not detected due to the coupler, the electromagnetic waves are free for the influence of the coupler. Second, electromagnetic waves are measured for combined soil nails with the length of 1 m~15 m for the investigation of the characteristics of electromagnetic waves. The travel time of the electromagnetic wave increases with an increase in the soil nail length. In addition, the ground cable is used to apply the electromagnetic waves to pre-installed soil nails. Test results show that the travel time of the electromagnetic wave by using the ground cable increases with an increase in soil nail length. This study demonstrates that the electromagnetic wave may be a promising method for the evaluation of the soil nail length.

쏘일네일은 지반과 네일간에 발생하는 마찰특성을 이용하여 지반을 보강하기 때문에 쏘일네일의 길이는 지반의 안정성에 매우 중요한 요소이다. 이와 같은 이유로 쏘일네일의 길이를 정확히 평가하여 지반의 안정성을 확보해야 한다. 본 연구는 쏘일네일의 길이를 평가하는 기법을 개발하기 위한 기초 연구로써 비파괴기법의 적용성을 제시하고자 한다. 첫째, 커플러로 연결된 철근에도 적용 가능한 기법을 개발하기 위해 초음파와 전자기파를 적용한 실험을 수행하였다. 실험 결과, 초음파는 커플러의 영향으로 신호를 측정할 수 없는 반면, 전자기파의 경우 커플러의 영향 없이 신호를 측정할 수 있었다. 둘째, 쏘일네일의 길이에 따른 전자기파 신호양상을 파악하기 위해 1 m~15 m의 길이가 되도록 철근을 조합한 후, 전자기파를 측정하였다. 그 결과, 철근의 길이가 증가할수록 전자기파의 도달시간이 증가하는 것으로 나타났다. 또한, 기 설치된 쏘일네일에도 적용할 수 있도록 접지선을 이용한 실험도 수행하였다. 실험결과, 접지선을 이용한 경우에도 철근의 길이가 증가할수록 전자기파의 도달시간도 증가하는 것으로 나타났다. 본 연구의 결과는 전자기파가 쏘일네일의 길이를 평가하기에 유용한 기법임을 보여준다.

Keywords

References

  1. ASTM D4945-08 (2008), "Standard test method for high-strain dynamic testing of deep foundations", ASTM International, West Conshohocken, PA, USA.
  2. ASTM D5882-07 (2007), "Standard test method for low strain impact integrity testing of deep foundations", ASTM International, West Conshohocken, PA, USA.
  3. ASTM D6760-14 (2014), "Standard test method for integrity testing of concrete deep foundations by ultrasonic crosshole testing", ASTM International, West Conshohocken, PA, USA.
  4. Elias, V., Juran, I. (1991), "Soil nailing for stabilization of highway slopes and excavations", United States Federal Highway Administration, Publication No. FHWA-RD-89-193.
  5. Harper, C.A. (1972), Handbook of wiring, cabling, and interconnecting for electronics, McGraw-Hill, New York.
  6. Hong, Y.H., Yu, J.D., Byun, Y.H., Jang, H.I., You, B.C., Lee, J.S. (2013), "Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 187-199. https://doi.org/10.9711/KTAJ.2013.15.3.187
  7. Juran, I., Baudrand, G., Farrag, K., Elias, V. (1990), "Kinematical limit analysis for design of soil-nailed structures", Journal of the Geotechnical Engineering, ASCE, Vol. 116, No. 1, pp. 54-73. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(54)
  8. Kim, H.T. (2001), Past, present, and future of soil nailing, Pyungmoongak.
  9. Kim, H.T., Lee, I. (2011), "An analytical study on the relationship between factor of safety and horizontal displacement of soil nailed walls", Journal of the Korean Geoenvironmental Society, Vol. 12, No. 2, pp. 45-53.
  10. Lee, J.S., Lee, C., Yoon, H.K., Lee, W. (2010), "Penetration type field velocity probe for soft soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 1, pp. 199-206. https://doi.org/10.1061/(ASCE)1090-0241(2010)136:1(199)
  11. Lio, S.T., Huang, C.K., Wang, C.Y. (2008), "Sonic echo and impulse response tests for length evaluation of soil nails in various bonding mediums", Canadian Geotechnical Journal, Vol. 45, No. 7, pp. 1025-1035. https://doi.org/10.1139/T08-034
  12. O'Connor, K.M., Dowding, C.H. (1999), Geo-Measurements by pulsing TDR cables and probes, CRC Press, London.
  13. Park, M.C., Han, H.S., Lee, J.H., Kim, S.S. (2010), "Behavior analysis of soil nail using tdr sensor", Proceedings of the KSEG Conference, Muju, Korea, pp. 71-74.
  14. Santamarina, J.C., Klein, A., Fam, M.A. (2001), Soils and waves, John Wiley & Sons Ltd, West Sussex, pp. 194-195.
  15. Schlosser, F. (1983), "Analogies et differences dans le comportement et le calcul des ouvrages de soutenement en Terre Armee et par clouage des sols", (Trad.: Similarities and differences in the behavior and design of retaining structures of reinforced earth and soil nailing). Annales de L'Institut Technique de Batiment et des Travaux Publics, No. 418, Series: Sols et Fondations, Paris, France.
  16. Shen, C.K., Bang, S., Herrmann, L.R. (1981), "Ground movement analysis of an aarth aupport system, Journal of the Geotechnical Engineering, ASCE, Vol. 107, No. 12, pp. 1609-1624.
  17. Siddiqui, S.I., Drnevich, V.P., Deschamps, R.J. (2000), "Time domain reflectometry for use in geotechnical engineering", Geotechnical Testing Journal, ASTM, Vol. 23, No. 1, pp. 9-20. https://doi.org/10.1520/GTJ11119J
  18. Singla, S. (1999), Demonstration project 103: Design and construction monitoring of soil sail walls, United States Department of Transportation, Federal Highway Administration, Publication No. FHWA-IF-99-026.
  19. Stocker, M. F., Korber, G. W., Gassler, G., and Gudehus, G. (1979), "Soil nailing", Proc., Int. Conf. on Soil Reinforcement I, British Geotechnical Society, London, pp. 469-474.
  20. Topp, G.C., Davis, J.L., Annan, A.P. (1980), "Electromagnetic determination of soil water content: Measurement in coaxial transmission lines", Water resources research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  21. Yu, J.D., Bae, M.H., Lee, I.M., Lee, J.S. (2013), "Nongrouted ratio evaluation of rock bolts by reflection of guided ultrasonic waves", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 2, pp. 298-307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000767

Cited by

  1. Non-destructive Health Monitoring of Soil Nails Using Electromagnetic Waves 2018, https://doi.org/10.1139/cgj-2017-0043
  2. Nondestructive Integrity Evaluation of Soil Nails Using Longitudinal Waves vol.144, pp.11, 2018, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001976