Connecting the Inner and Outer Product of Vectors Based on the History of Mathematics

수학사에 기초한 벡터의 내적과 외적의 연결

  • Received : 2015.04.06
  • Accepted : 2015.05.19
  • Published : 2015.05.31

Abstract

In this paper, I investigated the historical development process for the product of two vectors in the plane and space, and draw implications for educational guidance to internal and external product of vectors based on it. The results of the historical analysis show that efforts to define the product of the two line segments having different direction in the plane justified the rules of complex algebraic calculations with its length of the product of their lengths and its direction of the sum of their directions. Also, the efforts to define the product of the two line segments having different direction in three dimensional space led to the introduction of quaternion. In addition, It is founded that the inner product and outer product of vectors was derived from the real part and vector part of multiplication of two quaternions. Based on these results, I claimed that we should review the current deployment method of making inner product and outer product as multiplications that are not related to each other, and suggested one approach for connecting the inner and outer product.

본 논문은 평면과 공간에서 두 벡터의 곱에 대한 역사적 발달 과정을 살펴보고, 이를 바탕으로 벡터의 내적과 외적을 연결하기 위한 교육적 시사점을 도출하였다. 역사적 분석의 결과, 평면에서 방향이 다른 두 선분의 곱을 정의하려는 노력은 두 선분의 길이의 곱과 방향각의 합이라는 기하학적 의미와 함께 복소수의 연산 규칙을 확립함으로써 복소수를 수학적 대상으로 승인하는 계기를 제공하였음을 확인하였다. 또한 3차원 공간에서 방향이 다른 두 선분의 곱을 정의하려는 노력은 사원수의 도입을 이끌었으며, 사원수의 곱으로 나타나는 실수부분과 벡터부분이 각각 벡터의 내적과 외적의 현대적인 정의로 발전하였음을 확인하였다. 이러한 분석 결과를 토대로 기하학적 관점에서 벡터의 내적과 외적을 각각 다른 방식으로 정의하여 서로 관련이 없는 것으로 인식하도록 만드는 현재의 전개방식에 대해 반성하고, 이 두 곱을 연결시키기 위한 한 가지 방안을 제시하였다.

Keywords

References

  1. 교육과학기술부(2011). 수학과 교육과정. 교육과학기술부 고시 제 2011-361호 [별책8].
  2. 김응태․박승안(1993). 선형대수학. 청문각
  3. 우정호․정영옥․박경미․이경화․김남희․나귀수․임재훈(2006). 수학교육학 연구방법론. 서울: 경문사.
  4. 이기돈․최영기(2014). 수학 내러티브의 교육적 활용. 수학교육학연구, 24(3), 443-465.
  5. 이동환(2012). 복소수 개념의 발달과 교육적 함의. 한국수학사학회지, 25(3), 53-75.
  6. 이동환(2014). 수학적 지식의 발달에서 연속성 원리와 역할. 한국수학사학회지, 27(1), 67-79. https://doi.org/10.14477/jhm.2014.27.1.067
  7. 이윤수(2009). 벡터 개념의 지도에 관한 연구. 서울대학교 대학원 석사학위 논문.
  8. 이종희(1999). 함수 개념의 역사적 발달과 인식론적 장애. 수학교육학연구, 9(1), 133-150.
  9. 이준열․최부림․김동재․한대희․전용주․장희숙․조석연․조성철․황선미․박성훈(2014). 고등학교 기하와 벡터. 서울: 천재교육.
  10. 이지현․홍갑주(2008). 교과지식으로서의 유클리드 기하와 벡터기하의 연결성. 학교수학, 10(4), 573-581.
  11. 이희정․신경희(2013). 그라스만의 수학 인식과 벡터공간의 일반화, 한국수학사학회지, 26(4), 245-257. https://doi.org/10.14477/jhm.2013.26.4.245
  12. 정연준(2011). 자연수 곱셈 계산법의 역사적 발달 과정에 대한 고찰. 학교수학, 13(2), 267-286.
  13. 황선욱․강병개․김영록․윤갑진․김수영․송미현․이성원․도종훈․이문호․박효정․박진호(2014). 고등학교 기하와 벡터. 서울: 좋은책 신사고.
  14. Brousseau, G. (2005). The study of the didactical conditions of school learning in mathematics. In Activity and Sign (pp. 159-168). Springer US.
  15. Boyer, C. B., & Merzbach, U. C. (2000). 수학의 역사․ 상. 양영오․ 조윤동 (공역). 서울: 경문사.(영어 원작은 1991 년에 출판).
  16. Cajori, F. (1928). A history of mathematical notations (Vol. 1). Courier Corporation.
  17. Cardano, G. (1993). Ars magna or the rules of algebra. Ed. R. T. Witmer. New York: Dover.
  18. Crowe, M. J. (1967). A history of vector analysis:The evolution of the idea of a vectorial system. University of Notre Dame Press.
  19. Harel, G. (1990). Using geometric models and vector arithmetic to teach high‐school students basic notions in linear algebra. International Journal of Mathematical Education in Science and Technology, 21(3), 387-392. https://doi.org/10.1080/0020739900210306
  20. Shulman, L. S. (1986). Those who understand:Knowledge growth in teaching. Educational researcher , 4-14.
  21. Sierpinska, A. (2002). On some aspects of students' thinking in linear algebra. In On the teaching of linear algebra (pp. 209-246). Springer Netherlands.
  22. Thomas, G. B., Weir, M. D., & Hass, J. R. (2010). Thomas' calculus early transcendentals. Seoul: Pearson.